
 2012-2018 Microchip Technology Inc. DS50002071G

MPLAB® XC16 C Compiler

User’s Guide

DS50002071G-page 2 2012-2018 Microchip Technology Inc.

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer’s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights unless otherwise stated.

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2009 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company’s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip’s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

== ISO/TS 16949 ==

Trademarks

The Microchip name and logo, the Microchip logo, AnyRate, AVR,
AVR logo, AVR Freaks, BeaconThings, BitCloud, chipKIT, chipKIT
logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR,
Heldo, JukeBlox, KEELOQ, KEELOQ logo, Kleer, LANCheck, LINK
MD, maXStylus, maXTouch, MediaLB, megaAVR, MOST, MOST
logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32
logo, Prochip Designer, QTouch, RightTouch, SAM-BA, SpyNIC,
SST, SST Logo, SuperFlash, tinyAVR, UNI/O, and XMEGA are
registered trademarks of Microchip Technology Incorporated in
the U.S.A. and other countries.

ClockWorks, The Embedded Control Solutions Company,
EtherSynch, Hyper Speed Control, HyperLight Load, IntelliMOS,
mTouch, Precision Edge, and Quiet-Wire are registered
trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any
Capacitor, AnyIn, AnyOut, BodyCom, CodeGuard,
CryptoAuthentication, CryptoCompanion, CryptoController,
dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM,
ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, Inter-
Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, Mindi,
MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB,
MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation,
PICDEM, PICDEM.net, PICkit, PICtail, PureSilicon, QMatrix,
RightTouch logo, REAL ICE, Ripple Blocker, SAM-ICE, Serial
Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II,
Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan,
WiperLock, Wireless DNA, and ZENA are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in
the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip
Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology
Germany II GmbH & Co. KG, a subsidiary of Microchip Technology
Inc., in other countries.

All other trademarks mentioned herein are property of their
respective companies

© 2012-2018, Microchip Technology Incorporated, Printed in
the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-2827-5

MPLAB® XC16 C COMPILER

USER’S GUIDE

Table of Contents
Preface ... 13

Chapter 1. Compiler Overview
1.1 Introduction ... 17
1.2 Device Description ... 17
1.3 Compiler Description and Documentation .. 17

1.3.1 ANSI C Standard ... 17
1.3.2 Optimization .. 18
1.3.3 ANSI Standard Library Support ... 18
1.3.4 Flexible Memory Models .. 18
1.3.5 Attributes and Qualifiers .. 18
1.3.6 Compiler Driver ... 18
1.3.7 Documentation .. 18

1.4 Compiler and Other Development Tools .. 19

Chapter 2. Common C Interface
2.1 Introduction ... 21
2.2 Background – The Desire for Portable Code ... 21

2.2.1 The ANSI Standard ... 22
2.2.2 The Common C Interface .. 23

2.3 Using the CCI ... 24
2.4 ANSI Standard Refinement .. 25

2.4.1 Source File Encoding .. 25
2.4.2 The Prototype for main .. 25
2.4.3 Header File Specification .. 25
2.4.4 Include Search Paths .. 26
2.4.5 The Number of Significant Initial Characters in an Identifier 27
2.4.6 Sizes of Types ... 27
2.4.7 Plain char Types .. 28
2.4.8 Signed Integer Representation .. 28
2.4.9 Integer Conversion .. 28
2.4.10 Bitwise Operations on Signed Values ... 29
2.4.11 Right-shifting Signed Values ... 29
2.4.12 Conversion of Union Member Accessed Using Member With Different Type

30
2.4.13 Default Bit-field int Type .. 30
2.4.14 Bit-fields Straddling a Storage Unit Boundary ... 31
2.4.15 The Allocation Order of Bit-fields ... 31
2.4.16 The NULL Macro .. 32
2.4.17 Floating-point Sizes ... 32

2.5 ANSI Standard Extensions ... 33
2.5.1 Generic Header File .. 33
2.5.2 Absolute Addressing ... 33
 2012-2018 Microchip Technology Inc. DS50002071G-page 3

MPLAB® XC16 C Compiler User’s Guide
2.5.3 Far Objects and Functions ...34
2.5.4 Near Objects ..35
2.5.5 Persistent Objects ..36
2.5.6 X and Y Data Objects ..37
2.5.7 Banked Data Objects ...37
2.5.8 Alignment of Objects ..38
2.5.9 EEPROM Objects ..39
2.5.10 Interrupt Functions ...40
2.5.11 Packing Objects ...42
2.5.12 Indicating Antiquated Objects ..43
2.5.13 Assigning Objects to Sections ...43
2.5.14 Specifying Configuration Bits ...44
2.5.15 Manifest Macros ...45
2.5.16 In-line Assembly ...46

2.6 Compiler Features .. 47
2.6.1 Enabling the CCI ..47

Chapter 3. How To’s
3.1 Introduction ... 49
3.2 Installing and Activating the Compiler .. 49

3.2.1 How Do I Install and Activate My Compiler? ..49
3.2.2 How Can I Tell If the Compiler Has Installed and Activated Successfully? 49
3.2.3 Can I Install More Than One Version of the Same Compiler?50

3.3 Invoking the Compiler ... 51
3.3.1 How Do I Compile from Within MPLAB X IDE? ...51
3.3.2 How Do I Compile on the Command Line? ..51
3.3.3 How Can I Select Which Compiler Version to Build With?51
3.3.4 How Can I Change the Compiler Optimizations?52
3.3.5 How Do I Know Which Optimization Features I Get?52
3.3.6 How Do I Know Which Compiler Options Are Available and What They Do?

52
3.3.7 How Do I Build Libraries? ..52
3.3.8 How Do I Know What the Build Options in MPLAB X IDE Do?52
3.3.9 What is Different About an MPLAB X IDE Debug Build?52

3.4 Writing Source Code .. 53
3.4.1 C Language Specifics ..53
3.4.2 Device-Specific Features ...53
3.4.3 Memory Allocation ...55
3.4.4 Variables ..56
3.4.5 Functions ...59
3.4.6 Interrupts ..61
3.4.7 Assembly Code ..62

3.5 Getting My Application to Do What I Want ... 64
3.5.1 How Do I Generate Debug Information? ..64
3.5.2 Why No Disassembly in the MPLAB X IDE Disassembly Window?64
3.5.3 How Do I Share Data Between Interrupt and Main-line Code?64
3.5.4 How to Protect My Code After It Is Programmed Into a Device?64
3.5.5 How Do I Redirect Standard I/O When Using Printf?65
3.5.6 How Do I Place Variables in Off-Chip Memory? ..65
3.5.7 How Can I Implement a Delay in My Code? ..65
3.5.8 How Can I Rotate a Variable? ...65
DS50002071G-page 4 2012-2018 Microchip Technology Inc.

Table of Contents
3.6 Understanding the Compilation Process .. 66
3.6.1 How Does Licensing Affect Features and Optimization Levels? 66
3.6.2 Why Can’t I Debug my Code after I Optimize? .. 66
3.6.3 How Can I Make My Code Smaller? ... 67
3.6.4 How Can I Reduce RAM Usage? .. 67
3.6.5 How Can I Make My Code Faster? ... 67
3.6.6 What are the Speed vs. Size Tradeoffs? ... 68
3.6.7 How Can I Control Where the Language Tool Places Objects in Memory? ..

68
3.6.8 How Can I Make My Interrupt Routine Faster? ... 68
3.6.9 How Big Can C Variables Be? .. 69
3.6.10 Which Optimizations Will Be Applied to My Code? 69
3.6.11 Which Devices are Supported by the Compiler? 70
3.6.12 How Do I Know What Code the Compiler Is Producing? 70
3.6.13 How Can I Tell How Big a Function Is? ... 70
3.6.14 How Do I Learn Where Variables and Functions Have Been Positioned? ..

70
3.6.15 How Do I Properly Reserve Memory? ... 70
3.6.16 How Do I Know How Much Memory Is Still Available? 71
3.6.17 Which Libraries Get Included by Default? ... 71
3.6.18 How Do I Create My Own Libraries? ... 71
3.6.19 Why Do I Get Out-of-memory Errors When I Select a Debugger? 71

3.7 Fixing Code That Does Not Work ... 72
3.7.1 How Do I Find Out What a Warning or Error Message Means? 72
3.7.2 How Do I Find the Code that Caused Compiler Errors Or Warnings in My Pro-

gram? .. 72
3.7.3 How Can I Stop Warnings from Being Produced? 73
3.7.4 How Do I Know If the Stack Has Overflowed? .. 73
3.7.5 What Can Cause Corrupted Variables and Code Failure When Using Inter-

rupts? ... 73

Chapter 4. XC16 Toolchain and MPLAB X IDE
4.1 Introduction ... 75
4.2 MPLAB X IDE and Tools Installation .. 75
4.3 MPLAB X IDE Setup .. 76
4.4 MPLAB X IDE Projects ... 77

4.4.1 Operation Summary .. 78
4.4.2 References .. 78

4.5 Project Setup .. 79
4.5.1 XC16 (Global Options) .. 80
4.5.2 xc16-as (16-Bit Assembler) ... 81
4.5.3 xc16-gcc (16-Bit C Compiler) .. 83
4.5.4 xc16-ld (16-Bit Linker) ... 87
4.5.5 xc16-ar (16-Bit Archiver/Librarian) ... 91
4.5.6 Options Page Features ... 91
4.5.7 Additional Search Paths and Directories ... 91

4.6 Project Example ... 92
4.6.1 Run the Project Wizard ... 92
4.6.2 Add a File to the Project .. 92
4.6.3 Build and Run the Project .. 93
4.6.4 Output Files ... 94
 2012-2018 Microchip Technology Inc. DS50002071G-page 5

MPLAB® XC16 C Compiler User’s Guide
4.6.5 Further Development ...94

Chapter 5. Compiler Command-Line Driver
5.1 Introduction ... 95
5.2 Invoking the Compiler ... 96

5.2.1 Drive Command-Line Format ...96
5.2.2 Environment Variables ...96
5.2.3 Input File Types ...98

5.3 The Compilation Sequence .. 99
5.3.1 The Compiler Applications ...99
5.3.2 Single-Step Compilation ..100
5.3.3 Multi-Step Compilation ...102
5.3.4 Assembly Compilation ...102

5.4 Runtime Files ... 103
5.4.1 Library Files ...103
5.4.2 Startup and Initialization ...104

5.5 Compiler Output ... 105
5.5.1 Output Files ..105
5.5.2 Diagnostic Files ..106

5.6 Compiler Messages .. 107
5.7 Driver Option Descriptions ... 107

5.7.1 Options Specific to 16-Bit Devices ...108
5.7.2 Options for Controlling the Kind of Output ...111
5.7.3 Options for Controlling the C Dialect ..112
5.7.4 Options for Controlling Warnings and Errors ...113
5.7.5 Options for Debugging ...119
5.7.6 Options for Controlling Optimization ..120
5.7.7 Options for Controlling the Preprocessor ...125
5.7.8 Options for Assembling ..128
5.7.9 Options for Linking ...128
5.7.10 Options for Directory Search ..130
5.7.11 Options for Code Generation Conventions ..130

5.8 MPLAB X IDE Toolchain Equivalents ... 132

Chapter 6. Device-Related Features
6.1 Introduction ... 133
6.2 Device Support ... 133
6.3 Device Header Files ... 133

6.3.1 Register Definition Files ...134
6.3.2 Device Support Information ...134
6.3.3 Compile Time Memory Information ..134

6.4 Stack .. 135
6.5 Configuration Bit Access .. 136
6.6 Using SFRs .. 137
6.7 Bit-Reversed and Modulo Addressing .. 139
6.8 Using EDS .. 140

6.8.1 Memory Models and Address Spaces ...140
6.8.2 Optimizations ...141
6.8.3 C Library Function Extensions ...141
DS50002071G-page 6 2012-2018 Microchip Technology Inc.

Table of Contents
Chapter 7. Differences Between MPLAB XC16 and ANSI C
7.1 Divergence from the ANSI C Standard .. 143
7.2 Extensions to the ANSI C Standard ... 143

7.2.1 Keyword Differences ... 143
7.2.2 Expression Differences ... 143

7.3 Implementation-Defined Behavior .. 143

Chapter 8. Supported Data Types and Variables
8.1 Introduction ... 145
8.2 Identifiers .. 145
8.3 Integer Data Types ... 146

8.3.1 Double-Word Integers ... 146
8.3.2 char Types ... 147

8.4 Floating-Point Data Types .. 148
8.5 Fixed-Point Data Types .. 149
8.6 Structures and Unions .. 150

8.6.1 Structure and Union Qualifiers .. 150
8.6.2 Bit-fields in Structures ... 151

8.7 Pointer Types ... 152
8.7.1 Combining Type Qualifiers and Pointers ... 152
8.7.2 Data Pointers ... 153
8.7.3 Function Pointers .. 153
8.7.4 Special Pointer Targets ... 153

8.8 Literal Constant Types and Formats .. 154
8.9 Standard Type Qualifiers .. 155

8.9.1 Const Type Qualifier .. 156
8.9.2 Volatile Type Qualifier ... 156

8.10 Compiler-Specific type Qualifiers ... 157
8.10.1 __psv__ Type Qualifier ... 157
8.10.2 __prog__ Type Qualifier .. 157
8.10.3 __eds__ Type Qualifier ... 158
8.10.4 __pack_upper_byte Type Qualifier ... 158
8.10.5 __pmp__ Type Qualifier .. 158
8.10.6 __external__ Type Qualifier .. 159

8.11 Variable Attributes .. 160

Chapter 9. Fixed-Point Arithmetic Support
9.1 Introduction ... 169
9.2 Enabling Fixed-Point Arithmetic Support .. 169
9.3 Data Types ... 170
9.4 Rounding .. 171
9.5 Division By Zero ... 171
9.6 External Definitions .. 171
9.7 Mixing C and Assembly Language Code ... 172

Chapter 10. Memory Allocation and Access
10.1 Introduction ... 173
10.2 Address Spaces ... 174
10.3 Variables In Data Space Memory ... 175
 2012-2018 Microchip Technology Inc. DS50002071G-page 7

MPLAB® XC16 C Compiler User’s Guide
10.3.1 Auto and Non-Auto Variables vs. Local and Global Variables175
10.3.2 Non-Auto Variable Allocation and Access ...175
10.3.3 Auto Variable Allocation and Access ...178
10.3.4 Changing Auto Variable Allocation ..181

10.4 Variables in Program Space ... 182
10.4.1 Allocation and Access of Program Memory Objects182
10.4.2 Access of Objects in Program Memory ..184
10.4.3 Size Limitations of Program Memory Variables185
10.4.4 Changing Program Memory Variable Allocation186

10.5 Parallel Master Port Access ... 187
10.5.1 Initialize PMP ...187
10.5.2 Declare a New Memory Space ..188
10.5.3 Define Variables within PMP Space ..188

10.6 External Memory Access .. 189
10.6.1 Declare a New Memory Space ..189
10.6.2 Define Variables Within an External Space ...189
10.6.3 Define How to Access Memory Spaces ...190
10.6.4 An External Example ...192

10.7 Extended Data Space Access .. 193
10.8 Dataflash Memory Access .. 194
10.9 Dual Partition Memory Access ... 194
10.10 Packing Data Stored in Flash ... 194

10.10.1 Packed Example ..194
10.10.2 Usage Considerations ..195
10.10.3 Addressing Information ..195

10.11 Allocation of Variables to Registers .. 196
10.12 Variables in EEPROM Data Space .. 196

10.12.1 Accessing EEData via User Managed PSV ...196
10.12.2 Accessing EEData Using TBLRDx Instructions197
10.12.3 Accessing EEData Using Managed Access ..198
10.12.4 Additional Sources of Information ..198

10.13 Dynamic Memory Allocation ... 198
10.14 Co-resident Applications .. 198
10.15 Memory Models .. 199

10.15.1 Near or Far Data ..199

Chapter 11. Operators and Statements
11.1 Introduction ... 201
11.2 Built-In Functions .. 201
11.3 Integral Promotion .. 201

Chapter 12. Register Usage
12.1 Introduction ... 203
12.2 Register Variables .. 203
12.3 Changing Register Contents .. 204

Chapter 13. Functions
13.1 Introduction ... 205
13.2 Writing Functions .. 205

13.2.1 Function Specifiers ..205
DS50002071G-page 8 2012-2018 Microchip Technology Inc.

Table of Contents
13.2.2 Function Attributes .. 206

13.3 Function Size Limits ... 214
13.4 Allocation of Function Code ... 214
13.5 Changing the Default Function Allocation .. 214
13.6 Inline Functions .. 215
13.7 Memory Models .. 216

13.7.1 Near or Far Code .. 217

13.8 Function Call Conventions ... 218
13.8.1 Function Parameters ... 219
13.8.2 Return Value ... 220
13.8.3 Preserving Registers Across Function Calls ... 220

Chapter 14. Interrupts
14.1 Introduction ... 221
14.2 Interrupt Operation ... 222
14.3 Writing an Interrupt Service Routine .. 223

14.3.1 Guidelines for Writing ISRs ... 223
14.3.2 Syntax for Writing ISRs ... 223
14.3.3 Coding ISRs .. 224
14.3.4 Using Macros to Declare Simple ISRs .. 224

14.4 Specifying the Interrupt Vector ... 225
14.4.1 Interrupt Vector Usage .. 225
14.4.2 Interrupt Vector Tables .. 226

14.5 Interrupt Service Routine Context Saving .. 227
14.5.1 Assembly and ISRs ... 227
14.5.2 context Attribute .. 227

14.6 Nesting Interrupts ... 227
14.7 Enabling/Disabling Interrupts ... 228
14.8 ISR Considerations .. 229

14.8.1 Sharing Memory with Mainline Code ... 229
14.8.2 PSV Usage with Interrupt Service Routines .. 233
14.8.3 Latency .. 233

Chapter 15. Main, Runtime Startup and Reset
15.1 Introduction ... 235
15.2 The main Function .. 235
15.3 Runtime Startup and Initialization ... 235

Chapter 16. Mixing C and Assembly Code
16.1 Introduction ... 237
16.2 Mixing Assembly Language and C Variables and Functions 237
16.3 Using Inline Assembly Language ... 240
16.4 Predefined Assembly Macros ... 246

Chapter 17. Library Routine
17.1 Introduction ... 248

Chapter 18. Optimizations
18.1 Introduction ... 249
18.2 Optimization Feature Summary .. 250
 2012-2018 Microchip Technology Inc. DS50002071G-page 9

MPLAB® XC16 C Compiler User’s Guide
18.3 How to Enable Optimization ... 252
18.4 Using Optimizations ... 253

18.4.1 Coding for an Optimizing Compiler ..253
18.4.2 Help! Optimizing Broke my Code! ..254
18.4.3 Debugging Strategies for Optimized Code ..256

Chapter 19. Preprocessing
19.1 Introduction ... 257
19.2 C Language Comments ... 257
19.3 Preprocessing Directives .. 258
19.4 Predefined Macro Names ... 259

19.4.1 Compiler Version Macro ..259
19.4.2 Output Types and Device Macros ..259
19.4.3 Device Features Macros ..260
19.4.4 Other Macros ...260

19.5 Pragmas vs. Attributes ... 261

Chapter 20. Linking Programs
20.1 Introduction ... 263
20.2 Default Memory Spaces ... 263
20.3 Replacing Library Symbols ... 265
20.4 Linker-Defined Symbols ... 265
20.5 Default Linker Script ... 266

Appendix A. Implementation-Defined Behavior
A.1 Introduction .. 267
A.2 Translation ... 268
A.3 Environment ... 268
A.4 Identifiers ... 269
A.5 Characters ... 269
A.6 Integers .. 270
A.7 Floating Point ... 271
A.8 Arrays and Pointers ... 271
A.9 Registers .. 272
A.10 Structures, Unions, Enumerations and Bit-Fields 272
A.11 Qualifiers .. 272
A.12 Declarators ... 272
A.13 Statements ... 272
A.14 Preprocessing Directives ... 273
A.15 Library Functions ... 274
A.16 Signals ... 275
A.17 Streams and Files .. 276
A.18 tmpfile .. 277
A.19 errno ... 277
A.20 Memory .. 277
A.21 abort ... 277
A.22 exit ... 277
A.23 getenv .. 277
DS50002071G-page 10 2012-2018 Microchip Technology Inc.

Table of Contents
A.24 system .. 277
A.25 strerror ... 278

Appendix B. Embedded Compiler Compatibility Mode
B.1 Introduction .. 279
B.2 Compiling in Compatibility Mode .. 280
B.3 Syntax Compatibility .. 280
B.4 Data Type .. 281
B.5 Operator ... 281
B.6 Extended Keywords ... 282
B.7 Intrinsic Functions .. 283
B.8 Pragmas ... 284

Appendix C. Diagnostics
C.1 Introduction .. 285
C.2 Errors ... 285
C.3 Warnings .. 304

Appendix D. GNU Free Documentation License
D.1 Preamble ... 325
D.2 Applicability and Definitions ... 325
D.3 Verbatim Copying .. 327
D.4 Copying in Quantity ... 327
D.5 Modifications .. 328
D.6 Combining Documents .. 329
D.7 Collections of Documents .. 329
D.8 Aggregation with Independent Works .. 330
D.9 Translation ... 330
D.10 Termination .. 330
D.11 Future Revisions of this License .. 331
D.12 Relicensing .. 331

Appendix E. ASCII Character Set .. 333

Appendix F. Deprecated Features
F.1 Introduction .. 335
F.2 Predefined Constants ... 335
F.3 Variables in Specified Registers .. 336

F.3.1 Defining Global Register Variables ... 336
F.3.2 Specifying Registers for Local Variables ... 337

F.4 Changing Non-Auto Variable Allocation ... 338
F.5 Configuration Settings Using Macros ... 338

Appendix G. Built-in Functions
G.1 Introduction .. 339
G.2 Built-In Function Descriptions .. 341

Appendix H. Document Revision History

Support .. 377

Glossary ... 381
 2012-2018 Microchip Technology Inc. DS50002071G-page 11

MPLAB® XC16 C Compiler User’s Guide
Index ...401

Worldwide Sales and Service ...413
DS50002071G-page 12 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER

USER’S GUIDE

Preface
INTRODUCTION

MPLAB XC16 C Compiler documentation and support information is discussed in the
sections below:

• Document Layout

• Conventions Used

• Recommended Reading

DOCUMENT LAYOUT

This document describes how to use GNU language tools to write code for 16-bit
applications. The document layout is as follows:

• Chapter 1. “Compiler Overview” – describes the compiler, development tools and
feature set.

• Chapter 2. “Common C Interface” – describes the common C interface that may
be used to enhance code portability between MPLAB XC compilers.

• Chapter 3. “How To’s” – a list of “how to” questions with brief explanations and
links to relevant sections in the manual.

• Chapter 4. “XC16 Toolchain and MPLAB X IDE” – explains the basics of how to
setup and use the compiler and related tools with MPLAB X IDE.

• Chapter 5. “Compiler Command-Line Driver” – describes how to use the compiler
from the command line.

• Chapter 6. “Device-Related Features” – describes the compiler header and regis-
ter definition files, as well as how to use with SFRs.

• Chapter 7. “Differences Between MPLAB XC16 and ANSI C” – describes the
differences between the C language supported by the compiler syntax and the
standard ANSI-89 C.

• Chapter 8. “Supported Data Types and Variables” – describes the compiler inte-
ger, floating point and pointer data types.

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documenta-
tion are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions
may differ from those in this document.

For the most up-to-date information on development tools, see the MPLAB® X IDE Help. Select the
Help menu and then “Topics” or “Help Contents” to open a list of available Help files.

For the most current PDFs, please refer to our web site (http://www.microchip.com). Documents are
identified by “DSXXXXXXXXA”, where “XXXXXXXX” is the document number and “A” is the revision
level of the document. This number is located on the bottom of each page, in front of the page number.
 2012-2018 Microchip Technology Inc. DS50002071G-page 13

MPLAB® XC16 C Compiler User’s Guide
• Chapter 9. “Fixed-Point Arithmetic Support” – explains fixed-point arithmetic sup-
port in the compiler.

• Chapter 10. “Memory Allocation and Access” – describes the compiler run-time
model, including information on sections, initialization, memory models, the
software stack and much more.

• Chapter 11. “Operators and Statements” – discusses operators and statements.

• Chapter 12. “Register Usage” – explains how to access and use SFRs.

• Chapter 13. “Functions” – details available functions.

• Chapter 14. “Interrupts” – describes how to use interrupts.

• Chapter 15. “Main, Runtime Startup and Reset” – describes important elements of
C code.

• Chapter 16. “Mixing C and Assembly Code” – provides guidelines to using the
compiler with 16-bit assembly language modules.

• Chapter 17. “Library Routines” – explains how to use libraries.

• Chapter 18. “Optimizations” – describes optimization options.

• Chapter 19. “Preprocessing” – details preprocessing operation.

• Chapter 20. “Linking Programs” – explains how linking works.

• Appendix A. “Implementation-Defined Behavior” – details compiler-specific
parameters described as implementation-defined in the ANSI standard.

• Appendix B. “Embedded Compiler Compatibility Mode” – details the compiler’s
compatibility mode.

• Appendix C. “Diagnostics” – lists error and warning messages generated by the
compiler.

• Appendix D. “GNU Free Documentation License” – usage license for the Free
Software Foundation.

• Appendix E. “ASCII Character Set” – a table of the ASCII character set.

• Appendix F. “Deprecated Features” – details features that are considered
obsolete.

• Appendix G. “Built-in Functions” – lists the built-in functions of the C compiler.

• Appendix H. “Document Revision History” – provides information on previous and
current revisions of this document.
DS50002071G-page 14 2012-2018 Microchip Technology Inc.

Preface
CONVENTIONS USED

The following conventions may appear in this documentation:

DOCUMENTATION CONVENTIONS

Description Represents Examples

Arial font:

Italic characters Referenced books MPLAB® XC16 C Compiler
User’s Guide

Emphasized text ...is the only compiler...

Initial caps A window the Output window

A dialog the Settings dialog

A menu selection select Enable Programmer

Quotes A field name in a window or
dialog

“Save project before build”

Underlined, italic text with
right angle bracket

A menu path File>Save

Bold characters A dialog button Click OK

A tab Click the Power tab

Text in angle brackets < > A key on the keyboard Press <Enter>, <F1>

Courier font:

Plain Courier Sample source code #define START

File names autoexec.bat

File paths c:\mcc18\h

Keywords _asm, _endasm, static

Command-line options -Opa+, -Opa-

Bit values 0, 1

Constants 0xFF, ’A’

Italic Courier A variable argument file.c, where file can be
any valid file name

Square brackets [] Optional arguments mpasmwin [options]
file [options]

Curly brackets and pipe
character: { | }

Choice of mutually exclusive
arguments; an OR selection

errorlevel {0|1}

Ellipses... Replaces repeated text var_name [,
var_name...]

Represents code supplied by
user

void main (void)
{ ...
}

Sidebar Text

Device Dependent.
This feature is not supported
on all devices. Devices sup-
ported will be listed in the title
or text.

xmemory attribute

DD
 2012-2018 Microchip Technology Inc. DS50002071G-page 15

MPLAB® XC16 C Compiler User’s Guide
RECOMMENDED READING

This guide describes how to use the MPLAB XC16 C Compiler. Other useful
documents are listed below. The following Microchip documents are available and
recommended as supplemental reference resources.

Release Notes (Readme Files)

For the latest information on Microchip tools, read the associated Release Notes
(HTML files) included with the software.

MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106)

A guide to using the 16-bit assembler, object linker, object archiver/librarian, and vari-
ous utilities.

16-Bit Language Tools Libraries Reference Manual (DS50001456)

A descriptive listing of libraries available for Microchip 16-bit devices. This includes
standard (including math) libraries and C compiler built-in functions. DSP and 16-bit
peripheral libraries are described in Release Notes provided with each peripheral
library type.

Device-Specific Documentation

The Microchip website contains many documents that describe 16-bit device functions
and features. Among these are:

• Individual and family data sheets

• Family reference manuals

• Programmer’s reference manuals

C Standards Information

American National Standard for Information Systems – Programming Language – C.
American National Standards Institute (ANSI), 11 West 42nd. Street, New York,
New York, 10036.

This standard specifies the form and establishes the interpretation of programs
expressed in the programming language C. Its purpose is to promote portability, reli-
ability, maintainability and efficient execution of C language programs on a variety of
computing systems.

C Reference Manuals

Harbison, Samuel P. and Steele, Guy L., C A Reference Manual, Fourth Edition,
Prentice-Hall, Englewood Cliffs, N.J. 07632.

Kernighan, Brian W. and Ritchie, Dennis M., The C Programming Language, Second
Edition. Prentice Hall, Englewood Cliffs, N.J. 07632.

Kochan, Steven G., Programming In ANSI C, Revised Edition. Hayden Books,
Indianapolis, Indiana 46268.

Plauger, P.J., The Standard C Library, Prentice-Hall, Englewood Cliffs, N.J. 07632.

Van Sickle, Ted., Programming Microcontrollers in C, First Edition. LLH Technology
Publishing, Eagle Rock, Virginia 24085.
DS50002071G-page 16 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 1. Compiler Overview
1.1 INTRODUCTION

The MPLAB XC16 C compiler is defined and described in the following topics:

• Device Description

• Compiler Description and Documentation

• Compiler and Other Development Tools

1.2 DEVICE DESCRIPTION

The MPLAB XC16 C compiler fully supports all Microchip 16-bit devices:

• The dsPIC® family of digital signal controllers combines the high performance
required in digital signal processor (DSP) applications with standard microcontrol-
ler (MCU) features needed for embedded applications.

• The PIC24 family of MCUs are identical to the dsPIC DSCs with the exception that
they do not have the digital signal controller module or that subset of instructions.
They are a subset, and are high-performance MCUs intended for applications that
do not require the power of the DSC capabilities.

1.3 COMPILER DESCRIPTION AND DOCUMENTATION

The MPLAB XC16 C compiler is a full-featured, optimizing compiler that translates
standard ANSI C programs into 16-bit device assembly language source. The compiler
also supports many command-line options and language extensions that allow full
access to the 16-bit device hardware capabilities and affords fine control of the com-
piler code generator.

The compiler is a port of the GNU Compiler Collection (GCC) compiler from the Free
Software Foundation.

The compiler is available for several popular operating systems, including 32 and 64-bit
Windows® OS, Linux® OS and Mac® OS X®.

The compiler can be licensed as Free or PRO. The Free license has the minimum opti-
mizations whereas the PRO license has the maximum (for details see Chapter
18. “Optimizations.”).The basic compiler operation, supported devices and available
memory are identical across all modes.

This key features of the compiler are discussed in the following sections.

1.3.1 ANSI C Standard

The compiler is a fully validated compiler that conforms to the ANSI C standard as
defined by the ANSI specification (ANSI x3.159-1989) and described in Kernighan and
Ritchie’s The C Programming Language (second edition). The ANSI standard includes
extensions to the original C definition that are now standard features of the language.
These extensions enhance portability and offer increased capability. In addition,
language extensions for dsPIC DSC embedded-control applications are included.
 2012-2018 Microchip Technology Inc. DS50002071G-page 17

MPLAB® XC16 C Compiler User’s Guide
1.3.2 Optimization

The compiler uses a set of sophisticated optimization passes that employ many
advanced techniques for generating efficient, compact code from C source. The
optimization passes include high-level optimizations that are applicable to any C code,
as well as 16-bit device-specific optimizations that take advantage of the particular
features of the device architecture.

For more on optimizations, see Chapter 18. “Optimizations.”

1.3.3 ANSI Standard Library Support

The compiler is distributed with a complete ANSI C standard library. All library functions
have been validated, and conform to the ANSI C library standard. The library includes
functions for string manipulation, dynamic memory allocation, data conversion, time-
keeping and math functions (trigonometric, exponential and hyperbolic). The standard
I/O functions for file handling are also included, and as distributed, they support full
access to the host file system using the command-line simulator. The fully functional
source code for the low-level file I/O functions is provided in the compiler distribution
and may be used as a starting point for applications that require this capability.

1.3.4 Flexible Memory Models

The compiler supports both large and small code and data models. The small code
model takes advantage of more efficient forms of call and branch instructions, while the
small data model supports the use of compact instructions for accessing data in SFR
space.

The compiler supports two models for accessing constant data. The “constants in data”
model uses data memory, which is initialized by the run-time library. The “constants in
code” model uses program memory, which is accessed through the Program Space
Visibility (PSV) window.

1.3.5 Attributes and Qualifiers

The compiler keyword __attribute__ allows you to specify special attributes of
variables, structure fields or functions. This keyword is followed by an attribute
specification inside double parentheses, as in:

int last_mode __attribute__ ((persistent));

In other compilers, qualifiers are used to create qualified types:

persistent int last_mode;

The MPLAB XC16 C Compiler does have some non-standard qualifiers described in
Section 8.10 “Compiler-Specific type Qualifiers.”

Generally speaking, qualifiers indicate how an object should be accessed, whereas
attributes indicate where objects are to be located. Attributes also have many other
purposes.

1.3.6 Compiler Driver

The compiler includes a powerful command-line driver program. Using the driver
program, application programs can be compiled, assembled and linked in a single step.

1.3.7 Documentation

The compiler is supported under both the MPLAB® X IDE and MPLAB IDE v8.xx and
above. In this document, only the MPLAB X IDE is discussed.

Features that are unique to specific devices and therefore specific compilers, are noted
with a “DD” icon next to the section and text that identifies the specific devices to which
the information applies (see the Preface).
DS50002071G-page 18 2012-2018 Microchip Technology Inc.

Compiler Overview
1.4 COMPILER AND OTHER DEVELOPMENT TOOLS

The compiler works with many other Microchip tools including:

• MPLAB XC16 Assembler and Linker - see the MPLAB® XC16 Assembler, Linker
and Utilities User’s Guide (DS50002106)

• MPLAB X IDE

• MPLAB X Simulator

• Command-line MDB Simulator - see the Microchip Debugger (MDB) User’s Guide
(DS52102) located in:
<MPLAB X IDE Installation Directory>docs

• All Microchip debug tools and programmers

• Demonstration boards and Starter kits that support 16-bit devices
 2012-2018 Microchip Technology Inc. DS50002071G-page 19

MPLAB® XC16 C Compiler User’s Guide
NOTES:
DS50002071G-page 20 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER
Chapter 2. Common C Interface
2.1 INTRODUCTION

The Common C Interface (CCI) is available with all MPLAB® XC C compilers and is
designed to enhance code portability between these compilers. For example,
CCI-conforming code would make it easier to port from a PIC18 MCU using the MPLAB
XC8 C compiler to a PIC24 MCU using the MPLAB XC16 C compiler.

The CCI assumes that your source code already conforms to the ANSI Standard. If you
intend to use the CCI, it is your responsibility to write code that conforms. Legacy proj-
ects will need to be migrated to achieve conformance. A compiler option must also be
set to ensure that the operation of the compiler is consistent with the interface when the
project is built.

The following topics are covered in this chapter:

• Background – The Desire for Portable Code

• Using the CCI

• ANSI Standard Refinement

• ANSI Standard Extensions

• Compiler Features

2.2 BACKGROUND – THE DESIRE FOR PORTABLE CODE

All programmers want to write portable source code.

Portability means that the same source code can be compiled and run in a different
execution environment than that for which it was written. Rarely can code be one hun-
dred percent portable, but the more tolerant it is to change, the less time and effort it
takes to have it running in a new environment.

Embedded engineers typically think of code portability as being across target devices,
but this is only part of the situation. The same code could be compiled for the same
target but with a different compiler. Differences between those compilers might lead to
the code failing at compile time or runtime, so this must be considered as well.

You can only write code for one target device and only use one brand of compiler, but
if there is no regulation of the compiler’s operation, simply updating your compiler
version can change your code’s behavior.

Code must be portable across targets, tools, and time to be truly flexible.

Clearly, this portability cannot be achieved by the programmer alone, since the com-
piler vendors can base their products on different technologies, implement different fea-
tures and code syntax, or improve the way their product works. Many a great compiler
optimization has broken many an unsuspecting project.

Standards for the C language have been developed to ensure that change is managed
and code is more portable. The American National Standards Institute (ANSI) pub-
lishes standards for many disciplines, including programming languages. The ANSI C
Standard is a universally adopted standard for the C programming language.
 2012-2018 Microchip Technology Inc. DS50002071G-page 21

MPLAB® XC16 C Compiler User’s Guide
2.2.1 The ANSI Standard

The ANSI C Standard has to reconcile two opposing goals: freedom for compiler ven-
dors to target new devices and improve code generation, with the known functional
operation of source code for programmers. If both goals can be met, source code can
be made portable.

The standard is implemented as a set of rules which detail not only the syntax that a
conforming C program must follow, but also the semantic rules by which that program
will be interpreted. Thus, for a compiler to conform to the standard, it must ensure that
a conforming C program functions as described by the standard.

The standard describes implementation, the set of tools, and the runtime environment
on which the code will run. If any of these change, e.g., you build for, and run on, a dif-
ferent target device, or if you update the version of the compiler you use to build, then
you are using a different implementation.

The standard uses the term behavior to mean the external appearance or action of the
program. It has nothing to do with how a program is encoded.

Since the standard is trying to achieve goals that could be construed as conflicting,
some specifications appear somewhat vague. For example, the standard states that an
int type must be able to hold at least a 16-bit value, but it does not go as far as saying
what the size of an int actually is; and the action of right-shifting a signed integer can
produce different results on different implementations; yet, these different results are
still ANSI C compliant.

If the standard is too strict, device architectures cannot allow the compiler to conform.1
But, if it is too weak, programmers would see wildly differing results within different
compilers and architectures, and the standard would lose its effectiveness.

The standard organizes source code whose behavior is not fully defined into groups
that include the following behaviors:

Code that strictly conforms to the standard does not produce output that is dependent
on any unspecified, undefined, or implementation-defined behavior. The size of an
int, which was used as an example earlier, falls into the category of behavior that is
defined by implementation. That is to say, the size of an int is defined by which com-
piler is being used, how that compiler is being used, and the device that is being
targeted.

All the MPLAB XC compilers conform to the ANSI X3.159-1989 Standard for program-
ming languages (with the exception of the MPLAB XC8 compiler’s inability to allow
recursion, as mentioned in the footnote). This is commonly called the C89 Standard.
Some features from the later standard, C99, are also supported.

1. For example, the mid-range PIC® microcontrollers do not have a data stack. Because a compiler
targeting this device cannot implement recursion, it (strictly speaking) cannot conform to the ANSI
C Standard. This example illustrates a situation in which the standard is too strict for mid-range
devices and tools.

Implementation-defined
behavior

This is unspecified behavior in which each
implementation documents how the choice is made.

Unspecified behavior The standard provides two or more possibilities and
imposes no further requirements on which possibility is
chosen in any particular instance.

Undefined behavior This is behavior for which the standard imposes no
requirements.
DS50002071G-page 22 2012-2018 Microchip Technology Inc.

Common C Interface
For freestanding implementations (or for what we typically call embedded applications),
the standard allows non-standard extensions to the language, but obviously does not
enforce how they are specified or how they work. When working so closely to the
device hardware, a programmer needs a means of specifying device setup and inter-
rupts, as well as utilizing the often complex world of small-device memory
architectures. This cannot be offered by the standard in a consistent way.

While the ANSI C Standard provides a mutual understanding for programmers and
compiler vendors, programmers need to consider the implementation-defined behavior
of their tools and the probability that they may need to use extensions to the C language
that are non-standard. Both of these circumstances can have an impact on code
portability.

2.2.2 The Common C Interface

The Common C Interface (CCI) supplements the ANSI C Standard and makes it easier
for programmers to achieve consistent outcomes on all Microchip devices when using
any of the MPLAB XC C compilers.

It delivers the following improvements, all designed with portability in mind.

Refinement of the
ANSI C Standard

The CCI documents specific behavior for some code in which
actions are implementation-defined behavior under the ANSI
C Standard. For example, the result of right-shifting a signed
integer is fully defined by the CCI. Note that many
implementation-defined items that closely couple with device
characteristics, such as the size of an int, are not defined by
the CCI.

Consistent syntax
for non-standard
extensions

The CCI non-standard extensions are mostly implemented
using keywords with a uniform syntax. They replace keywords,
macros and attributes that are the native compiler implementa-
tion. The interpretation of the keyword can differ across each
compiler, and any arguments to the keywords can be device
specific.

Coding guidelines The CCI can indicate advice on how code should be written so
that it can be ported to other devices or compilers. While you
may choose not to follow the advice, it will not conform to the
CCI.
 2012-2018 Microchip Technology Inc. DS50002071G-page 23

MPLAB® XC16 C Compiler User’s Guide
2.3 USING THE CCI

The CCI allows enhanced portability by refining implementation-defined behavior and
standardizing the syntax for extensions to the language.

The CCI is something you choose to follow and put into effect, thus it is relevant for new
projects, although you can choose to modify existing projects so they conform.

For your project to conform to the CCI, you must complete the following tasks.

• Enable the CCI

Select the MPLAB X IDE widget Use CCI Syntax in your project, or use the
command-line option that is equivalent.

• Include <xc.h> in every module

Some CCI features are only enabled if this header is seen by the compiler.

• Ensure ANSI compliance

Code that does not conform to the ANSI C Standard does not confirm to the CCI.

• Observe refinements to ANSI by the CCI

Some ANSI implementation-defined behavior is defined explicitly by the CCI.

• Use the CCI extensions to the language

Use the CCI extensions rather than the native language extensions.

The next sections detail specific items associated with the CCI. These items are seg-
regated into those that refine the standard, those that deal with the ANSI C Standard
extensions, and other miscellaneous compiler options and usage. Guidelines are
indicated with these items.

If any implementation-defined behavior or any non-standard extension is not discussed
in this document, then it is not part of the CCI. For example, GCC case ranges, label
addresses, and 24-bit short long types are not part of the CCI. Programs which use
these features do not conform to the CCI. The compiler may issue a warning or error
to indicate a non-CCI feature has been used and the CCI is enabled.
DS50002071G-page 24 2012-2018 Microchip Technology Inc.

Common C Interface
2.4 ANSI STANDARD REFINEMENT

The following topics describe how the CCI refines the implementation-defined
behaviors outlined in the ANSI C Standard.

2.4.1 Source File Encoding

Under the CCI, a source file must be written using characters from the 7-bit ASCII set.
Lines can be terminated using a line feed ('\n') or carriage return ('\r') that is immediately
followed by a line feed. Escaped characters can be used in character constants or
string literals to represent extended characters that are not in the basic character set.

2.4.1.1 EXAMPLE

The following shows a string constant being defined that uses escaped characters.

const char myName[] = "Bj\370rk\n";

2.4.1.2 DIFFERENCES

All compilers have used this character set.

2.4.1.3 MIGRATION TO THE CCI

No action required.

2.4.2 The Prototype for main

The prototype for the main() function is:

int main(void);

2.4.2.1 EXAMPLE

The following shows an example of how main() might be defined:

int main(void)
{

while(1)
process();

}

2.4.2.2 DIFFERENCES

The 8-bit compilers used a void return type for this function.

2.4.2.3 MIGRATION TO THE CCI

Each program has one definition for the main() function. Confirm the return type for
main() in all projects previously compiled for 8-bit targets.

2.4.3 Header File Specification

Header file specifications that use directory separators do not conform to the CCI.

2.4.3.1 EXAMPLE

The following example shows two conforming include directives.

#include <usb_main.h>
#include "global.h"
 2012-2018 Microchip Technology Inc. DS50002071G-page 25

MPLAB® XC16 C Compiler User’s Guide
2.4.3.2 DIFFERENCES

Header file specifications that use directory separators have been allowed in previous
versions of all compilers. Compatibility problems arose when Windows-style separa-
tors “\” were used and the code was compiled under other host operating systems.
Under the CCI, no directory separators should be used.

2.4.3.3 MIGRATION TO THE CCI

Any #include directives that use directory separators in the header file specifications
should be changed. Remove all but the header file name in the directive. Add the direc-
tory path to the compiler’s include search path or MPLAB X IDE equivalent. This will
force the compiler to search the directories specified with this option.

For example, the following code:

#include <inc/lcd.h>

should be changed to:

#include <lcd.h>

and the path to the inc directory added to the compiler’s header search path in your
MPLAB X IDE project properties, or on the command-line as follows:

-Ilcd

2.4.4 Include Search Paths

When you include a header file under the CCI, the file should be discoverable in the
paths searched by the compiler that are detailed below.

Header files specified in angle bracket delimiters < > should be discoverable in the
search paths that are specified by -I options (or the equivalent MPLAB X IDE option),
or in the standard compiler include directories. The -I options are searched in the
order in which they are specified.

Header files specified in quote characters " " should be discoverable in the current
working directory or in the same directories that are searched when the header files are
specified in angle bracket delimiters (as above). In the case of an MPLAB X project, the
current working directory is the directory in which the C source file is located. If unsuc-
cessful, the search paths should point to the same directories searched when the
header file is specified in angle bracket delimiters.

Any other options to specify search paths for header files do not conform to the CCI.

2.4.4.1 EXAMPLE

If including a header file, as in the following directive:

#include "myGlobals.h"

The header file should be locatable in the current working directory, or the paths spec-
ified by any -I options, or the standard compiler directories. A header file being located
elsewhere does not conform to the CCI.

2.4.4.2 DIFFERENCES

The compiler operation under the CCI is not changed. This is purely a coding guideline.

2.4.4.3 MIGRATION TO THE CCI

Remove any option that specifies header file search paths other than the -I option (or
the equivalent MPLAB X IDE option), and use the -I option in place of this. Ensure the
header file can be found in the directories specified in this section.
DS50002071G-page 26 2012-2018 Microchip Technology Inc.

Common C Interface
2.4.5 The Number of Significant Initial Characters in an Identifier

At least the first 255 characters in an identifier (internal and external) are significant.
This includes the requirement of the ANSI C Standard that states a lower number of
significant characters are used to identify an object.

2.4.5.1 EXAMPLE

The following example shows two poorly named variables, but names which are
considered unique under the CCI.

int stateOfPortBWhenTheOperatorHasSelectedAutomaticModeAndMotorIsRunningFast;
int stateOfPortBWhenTheOperatorHasSelectedAutomaticModeAndMotorIsRunningSlow;

2.4.5.2 DIFFERENCES

Former 8-bit compilers used 31 significant characters by default, but an option allowed
this to be extended.

The 16- and 32-bit compilers did not impose a limit on the number of significant
characters.

2.4.5.3 MIGRATION TO THE CCI

No action required. You can take advantage of the less restrictive naming scheme.

2.4.6 Sizes of Types

The sizes of the basic C types, e.g., char, int and long, are not fully defined by the
CCI. These types, by design, reflect the size of registers and other architectural fea-
tures in the target device. They allow the device to efficiently access objects of this type.
The ANSI C Standard does, however, indicate minimum requirements for these types,
as specified in <limits.h>.

If you need fixed-size types in your project, use the types defined in <stdint.h>, e.g.,
uint8_t or int16_t. These types are consistently defined across all XC compilers,
even outside of the CCI.

Essentially, the C language offers a choice of two groups of types:

• Those that offer sizes and formats that are tailored to the device you are using.

• Those that have a fixed size, regardless of the target.

2.4.6.1 EXAMPLE

The following example shows the definition of a variable, native, whose size will allow
efficient access on the target device; and a variable, fixed, whose size is clearly indi-
cated and remains fixed, even though it may not allow efficient access on every device.

int native;
int16_t fixed;

2.4.6.2 DIFFERENCES

This is consistent with previous types implemented by the compiler.

2.4.6.3 MIGRATION TO THE CCI

If you require a C type that has a fixed size, regardless of the target device, use one of
the types defined by <stdint.h>.
 2012-2018 Microchip Technology Inc. DS50002071G-page 27

MPLAB® XC16 C Compiler User’s Guide
2.4.7 Plain char Types

The type of a plain char is unsigned char. It is generally recommended that all
definitions for the char type explicitly state the signedness of the object.

2.4.7.1 EXAMPLE

The following example

char foobar;

defines an unsigned char object called foobar.

2.4.7.2 DIFFERENCES

The 8-bit compilers have always treated plain char as an unsigned type.

The 16- and 32-bit compilers used signed char as the default plain char type. The
-funsigned-char option on those compilers changed the default type to be
unsigned char.

2.4.7.3 MIGRATION TO THE CCI

Any definition of an object defined as a plain char and using the 16- or 32-bit compilers
needs review. Any plain char that was intended to be a signed quantity should be
replaced with an explicit definition, for example.

signed char foobar;

You can use the -funsigned-char option on MPLAB XC16 and XC32 to change the
type of plain char, but since this option is not supported on MPLAB XC8, the code is
not strictly conforming.

2.4.8 Signed Integer Representation

The value of a signed integer is determined by taking the two’s complement of the
integer.

2.4.8.1 EXAMPLE

The following shows a variable, test, that is assigned the value -28 decimal.

signed char test = 0xE4;

2.4.8.2 DIFFERENCES

All compilers have represented signed integers in the way described in this section.

2.4.8.3 MIGRATION TO THE CCI

No action required.

2.4.9 Integer Conversion

When converting an integer type to a signed integer of insufficient size, the original
value is truncated from the most-significant bit to accommodate the target size.

2.4.9.1 EXAMPLE

The following shows an assignment of a value that is truncated.

signed char destination;
unsigned int source = 0x12FE;
destination = source;

Under the CCI, the value of destination after the alignment is -2 (i.e., the bit pattern
0xFE).
DS50002071G-page 28 2012-2018 Microchip Technology Inc.

Common C Interface
2.4.9.2 DIFFERENCES

All compilers have performed integer conversion in an identical fashion to that
described in this section.

2.4.9.3 MIGRATION TO THE CCI

No action required.

2.4.10 Bitwise Operations on Signed Values

Bitwise operations on signed values act on the two’s complement representation,
including the sign bit. See also Section 2.4.11 “Right-shifting Signed Values.”

2.4.10.1 EXAMPLE

The following example shows a negative quantity involved in a bitwise AND operation.

signed char output, input = -13;
output = input & 0x7E;

Under the CCI, the value of output after the assignment is 0x72.

2.4.10.2 DIFFERENCES

All compilers have performed bitwise operations in an identical fashion to that
described in this section.

2.4.10.3 MIGRATION TO THE CCI

No action required.

2.4.11 Right-shifting Signed Values

Right-shifting a signed value will involve sign extension. This will preserve the sign of
the original value.

2.4.11.1 EXAMPLE

The following shows an example of a negative quantity involved in a right-shift
operation.

signed char output, input = -13;
output = input >> 3;

Under the CCI, the value of output after the assignment is -2 (i.e., the bit pattern
0xFE).

2.4.11.2 DIFFERENCES

All compilers have performed right-shifting as described in this section.

2.4.11.3 MIGRATION TO THE CCI

No action required.
 2012-2018 Microchip Technology Inc. DS50002071G-page 29

MPLAB® XC16 C Compiler User’s Guide
2.4.12 Conversion of Union Member Accessed Using Member With
Different Type

If a union defines several members of different types and you use one member identi-
fier to try to access the contents of another (whether any conversion is applied to the
result) it is considered implementation-defined behavior in the standard. In the CCI, no
conversion is applied and the bytes of the union object are interpreted as an object of
the type of the member being accessed, without regard for alignment or other possible
invalid conditions.

2.4.12.1 EXAMPLE

The following example shows a union defining several members.

union {
signed char code;
unsigned int data;
float offset;

} foobar;

Code that attempts to extract offset by reading data is not guaranteed to read the
correct value.

float result;
result = foobbar.data;

2.4.12.2 DIFFERENCES

All compilers have not converted union members accessed via other members.

2.4.12.3 MIGRATION TO THE CCI

No action required.

2.4.13 Default Bit-field int Type

The type of a bit-field specified as a plain int is identical to that of one defined using
unsigned int. This is quite different from other objects where the types int, signed
and signed int are synonymous. It is recommended that the signedness of the
bit-field be explicitly stated in all bit-field definitions.

2.4.13.1 EXAMPLE

The following example shows a structure tag containing bit-fields that are unsigned
integers with the size specified.

struct OUTPUTS {
int direction :1;
int parity :3;
int value :4;

};

2.4.13.2 DIFFERENCES

The 8-bit compilers have previously issued a warning if type int was used for bit-fields,
but would implement the bit-field with an unsigned int type.

The 16- and 32-bit compilers have implemented bit-fields defined using int as having
a signed int type, unless the option -funsigned-bitfields was specified.
DS50002071G-page 30 2012-2018 Microchip Technology Inc.

Common C Interface
2.4.13.3 MIGRATION TO THE CCI

Any code that defines a bit-field with the plain int type should be reviewed. If the inten-
tion was for these to be signed quantities, then the type of these should be changed to
signed int. For example, in the following example:

struct WAYPT {
int log :3;
int direction :4;

};

the bit-field type should be changed to signed int, as in:

struct WAYPT {
signed int log :3;
signed int direction :4;

};

2.4.14 Bit-fields Straddling a Storage Unit Boundary

The standard indicates that implementations can determine whether bit-fields cross a
storage unit boundary. In the CCI, bit-fields do not straddle a storage unit boundary; a
new storage unit is allocated to the structure, and padding bits fill the gap.

Note that the size of a storage unit differs with each compiler, as this is based on the
size of the base data type (e.g., int) from which the bit-field type is derived. On 8-bit
compilers this unit is 8-bits in size; for 16-bit compilers, it is 16 bits; and for 32-bit
compilers, it is 32 bits in size.

2.4.14.1 EXAMPLE

The following example shows a structure containing bit-fields being defined.

struct {
 unsigned first : 6;
 unsigned second :6;
} order;

Under the CCI and using MPLAB XC8, the storage allocation unit is byte sized. The
bit-field, second, is allocated a new storage unit since there are only 2 bits remaining
in the first storage unit in which first is allocated. The size of this structure, order,
is 2 bytes.

2.4.14.2 DIFFERENCES

This allocation is identical with that used by all previous compilers.

2.4.14.3 MIGRATION TO THE CCI

No action required.

2.4.15 The Allocation Order of Bit-fields

The memory ordering of bit-fields into their storage unit is not specified by the ANSI C
Standard. In the CCI, the first bit defined is the least significant bit of the storage unit in
which it is allocated.
 2012-2018 Microchip Technology Inc. DS50002071G-page 31

MPLAB® XC16 C Compiler User’s Guide
2.4.15.1 EXAMPLE

The following example shows a structure containing bit-fields being defined.

struct {
 unsigned lo : 1;
 unsigned mid :6;
 unsigned hi : 1;
} foo;

The bit-field lo is assigned the least significant bit of the storage unit assigned to the
structure foo. The bit-field mid is assigned the next 6 least significant bits; and hi, the
most significant bit of that same storage unit byte.

2.4.15.2 DIFFERENCES

This is identical with the previous operation of all compilers.

2.4.15.3 MIGRATION TO THE CCI

No action required.

2.4.16 The NULL Macro

The NULL macro is defined by <stddef.h>; however, its definition is
implementation-defined behavior. Under the CCI, the definition of NULL is the expres-
sion (0).

2.4.16.1 EXAMPLE

The following example shows a pointer being assigned a null pointer constant via the
NULL macro.

int * ip = NULL;

The value of NULL (0) is implicitly converted to the destination type.

2.4.16.2 DIFFERENCES

The 32-bit compilers previously assigned NULL the expression ((void *)0).

2.4.16.3 MIGRATION TO THE CCI

No action required.

2.4.17 Floating-point Sizes

Under the CCI, floating-point types must not be smaller than 32 bits in size.

2.4.17.1 EXAMPLE

The following example shows the definition for outY, which is at least 32 bits in size.

float outY;

2.4.17.2 DIFFERENCES

The 8-bit compilers have allowed the use of 24-bit float and double types.

2.4.17.3 MIGRATION TO THE CCI

When using 8-bit compilers, the float and double type will automatically be made
32 bits in size once the CCI mode is enabled. Review any source code that may have
assumed a float or double type and may have been 24 bits in size.

No migration is required for other compilers.
DS50002071G-page 32 2012-2018 Microchip Technology Inc.

Common C Interface
2.5 ANSI STANDARD EXTENSIONS

The following topics describe how the CCI provides device-specific extensions to the
standard.

2.5.1 Generic Header File

A single header file <xc.h> must be used to declare all compiler- and device-specific
types and SFRs. You must include this file into every module to conform with the CCI.
Some CCI definitions depend on this header being seen.

2.5.1.1 EXAMPLE

The following example shows this header file being included, thus allowing confor-
mance with the CCI, as well as allowing access to SFRs.

#include <xc.h>

2.5.1.2 DIFFERENCES

Some 8-bit compilers used <htc.h> as the equivalent header. Previous versions of
the 16- and 32-bit compilers used a variety of headers to do the same job.

2.5.1.3 MIGRATION TO THE CCI

Change:

#include <htc.h>

previously used in 8-bit compiler code, or family-specific header files, e.g., from:

#include <p32xxxx.h>
#include <p30fxxxx.h>
#include <p33Fxxxx.h>
#include <p24Fxxxx.h>
#include "p30f6014.h"

to:

#include <xc.h>

2.5.2 Absolute Addressing

Variables and functions can be placed at an absolute address by using the __at()
construct. Stack-based (auto and parameter) variables cannot use the __at()
specifier.

2.5.2.1 EXAMPLE

The following example shows two variables and a function being made absolute.

int scanMode __at(0x200);
const char keys[] __at(124) = { ’r’, ’s’, ’u’, ’d’};

__at(0x1000) int modify(int x) {
return x * 2 + 3;

}

2.5.2.2 DIFFERENCES

The 8-bit compilers have used an @ symbol to specify an absolute address.

The 16- and 32-bit compilers have used the address attribute to specify an object’s
address.
 2012-2018 Microchip Technology Inc. DS50002071G-page 33

MPLAB® XC16 C Compiler User’s Guide
2.5.2.3 MIGRATION TO THE CCI

Avoid making objects and functions absolute if possible.

In MPLAB XC8, change absolute object definitions, e.g., from:

int scanMode @ 0x200;

to:

int scanMode __at(0x200);

In MPLAB XC16 and XC32, change code, e.g., from:

int scanMode __attribute__((address(0x200)));

to:

int scanMode __at(0x200);

2.5.2.4 CAVEATS

If the __at() and __section() specifiers are both applied to an object when using
MPLAB XC8, the __section() specifier is currently ignored.

The __at() specifier must be placed at the beginning of function prototypes for the
16- and 32-bit compilers. If you prefer to use the specifier at the end of the prototype,
use the specifier with a declaration and leave it off the definition, for example:

int modify(int x) __at(0x1000);
int modify(int x)
{ ... }

2.5.3 Far Objects and Functions

The __far qualifier can be used to indicate that variables or functions are located in
‘far memory’. Exactly what constitutes far memory is dependent on the target device,
but it is typically memory that requires more complex code to access. Expressions
involving far-qualified objects usually generate slower and larger code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

Some devices may not have such memory implemented; in which case, use of this
qualifier is ignored. Stack-based (auto and parameter) variables cannot use the
__far specifier.

2.5.3.1 EXAMPLE

The following example shows a variable and function qualified using __far.

__far int serialNo;
__far int ext_getCond(int selector);

2.5.3.2 DIFFERENCES

The 8-bit compilers have used the qualifier far to indicate this meaning. Functions
could not be qualified as far.

The 16-bit compilers have used the far attribute with both variables and functions.

The 32-bit compilers have used the far attribute with functions only.
DS50002071G-page 34 2012-2018 Microchip Technology Inc.

Common C Interface
2.5.3.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the far qualifier, e.g., from:

far char template[20];

to:

__far, i.e., __far char template[20];

In the 16- and 32-bit compilers, change any occurrence of the far attribute, e.g., from:

void bar(void) __attribute__ ((far));
int tblIdx __attribute__ ((far));

to:

void __far bar(void);
int __far tblIdx;

2.5.3.4 CAVEATS

None.

2.5.4 Near Objects

The __near qualifier can be used to indicate that variables or functions are located in
‘near memory’. Exactly what constitutes near memory is dependent on the target
device, but it is typically memory that can be accessed with less complex code. Expres-
sions involving near-qualified objects generally are faster and result in smaller code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

Some devices may not have such memory implemented; in which case, use of this
qualifier is ignored. Stack-based (auto and parameter) variables cannot use the
__near specifier.

2.5.4.1 EXAMPLE

The following example shows a variable and function qualified using __near.

__near int serialNo;
__near int ext_getCond(int selector);

2.5.4.2 DIFFERENCES

The 8-bit compilers have used the qualifier near to indicate this meaning. Functions
could not be qualified as near.

The 16-bit compilers have used the near attribute with both variables and functions.

The 32-bit compilers have used the near attribute for functions only.
 2012-2018 Microchip Technology Inc. DS50002071G-page 35

MPLAB® XC16 C Compiler User’s Guide
2.5.4.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the near qualifier to __near, e.g., from:

near char template[20];

to:

__near char template[20];

In 16- and 32-bit compilers, change any occurrence of the near attribute to __near,
e.g., from:

void bar(void) __attribute__ ((near));
int tblIdx __attribute__ ((near));

to:

void __near bar(void);
int __near tblIdx;

2.5.4.4 CAVEATS

None.

2.5.5 Persistent Objects

The __persistent qualifier can be used to indicate that variables should not be
cleared by the runtime startup code.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

2.5.5.1 EXAMPLE

The following example shows a variable qualified using __persistent.

__persistent int serialNo;

2.5.5.2 DIFFERENCES

The 8-bit compilers have used the qualifier, persistent, to indicate this meaning.

The 16- and 32-bit compilers have used the persistent attribute with variables to
indicate they were not to be cleared.

2.5.5.3 MIGRATION TO THE CCI

With 8-bit compilers, change any occurrence of the persistent qualifier to
__persistent, e.g., from:

persistent char template[20];

to:

__persistent char template[20];

For the 16- and 32-bit compilers, change any occurrence of the persistent attribute
to __persistent, e.g., from:

int tblIdx __attribute__ ((persistent));

to:

int __persistent tblIdx;

2.5.5.4 CAVEATS

None.
DS50002071G-page 36 2012-2018 Microchip Technology Inc.

Common C Interface
2.5.6 X and Y Data Objects

The __xdata and __ydata qualifiers can be used to indicate that variables are
located in special memory regions. Exactly what constitutes X and Y memory is depen-
dent on the target device, but it is typically memory that can be accessed independently
on separate buses. Such memory is often required for some DSP instructions.

Use the native keywords discussed in the Differences section to look up information on
the semantics of these qualifiers.

Some devices may not have such memory implemented; in which case, use of these
qualifiers is ignored.

2.5.6.1 EXAMPLE

The following example shows a variable qualified using __xdata, as well as another
variable qualified with __ydata.

__xdata char data[16];
__ydata char coeffs[4];

2.5.6.2 DIFFERENCES

The 16-bit compilers have used the xmemory and ymemory space attribute with
variables.

Equivalent specifiers have never been defined for any other compiler.

2.5.6.3 MIGRATION TO THE CCI

For 16-bit compilers, change any occurrence of the space attributes xmemory or
ymemory to __xdata, or __ydata respectively, e.g., from:

char __attribute__((space(xmemory)))template[20];

to:

__xdata char template[20];

2.5.6.4 CAVEATS

None.

2.5.7 Banked Data Objects

The __bank(num) qualifier can be used to indicate that variables are located in a par-
ticular data memory bank. The number, num, represents the bank number. Exactly what
constitutes banked memory is dependent on the target device, but it is typically a sub-
division of data memory to allow for assembly instructions with a limited address width
field.

Use the native keywords discussed in the Differences section to look up information on
the semantics of these qualifiers.

Some devices may not have banked data memory implemented; in which case, use of
this qualifier is ignored. The number of data banks implemented will vary from one
device to another.

2.5.7.1 EXAMPLE

The following example shows a variable qualified using __bank().

__bank(0) char start;
__bank(5) char stop;
 2012-2018 Microchip Technology Inc. DS50002071G-page 37

MPLAB® XC16 C Compiler User’s Guide
2.5.7.2 DIFFERENCES

The 8-bit compilers have used the four qualifiers bank0, bank1, bank2 and bank3 to
indicate the same, albeit more limited, memory placement.

Equivalent specifiers have never been defined for any other compiler.

2.5.7.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the bankx qualifiers to __bank(), e.g.,
from:

bank2 int logEntry;

to:

__bank(2) int logEntry;

2.5.7.4 CAVEATS

This feature is not yet implemented in MPLAB XC8.

2.5.8 Alignment of Objects

The __align(alignment) specifier can be used to indicate that variables must be
aligned on a memory address that is a multiple of the alignment specified. The align-
ment term must be a power of 2. Positive values request that the object’s start address
be aligned; negative values imply the object’s end address be aligned.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

2.5.8.1 EXAMPLE

The following example shows variables qualified using __align() to ensure they end
on an address that is a multiple of 8, and start on an address that is a multiple of 2,
respectively.

__align(-8) int spacer;
__align(2) char coeffs[6];

2.5.8.2 DIFFERENCES

An alignment feature has never been implemented on 8-bit compilers.

The 16- and 32-bit compilers used the aligned attribute with variables.

2.5.8.3 MIGRATION TO THE CCI

For 16- and 32-bit compilers, change any occurrence of the aligned attribute to
__align, e.g., from:

char __attribute__((aligned(4)))mode;

to:

__align(4) char mode;

2.5.8.4 CAVEATS

This feature is not yet implemented on MPLAB XC8.
DS50002071G-page 38 2012-2018 Microchip Technology Inc.

Common C Interface
2.5.9 EEPROM Objects

The __eeprom qualifier can be used to indicate that variables should be positioned in
EEPROM.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this qualifier.

Some devices may not implement EEPROM. Use of this qualifier for such devices
generates a warning. Stack-based (auto and parameter) variables cannot use the
__eeprom specifier.

2.5.9.1 EXAMPLE

The following example shows a variable qualified using __eeprom.

__eeprom int serialNos[4];

2.5.9.2 DIFFERENCES

The 8-bit compilers have used the qualifier, eeprom, to indicate this meaning for some
devices.

The 16-bit compilers have used the space attribute to allocate variables to the memory
space used for EEPROM.

2.5.9.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the eeprom qualifier to __eeprom, e.g.,
from:

eeprom char title[20];

to:

__eeprom char title[20];

For 16-bit compilers, change any occurrence of the eedata space attribute to
__eeprom, e.g., from:

int mainSw __attribute__ ((space(eedata)));

to:

int __eeprom mainSw;

2.5.9.4 CAVEATS

MPLAB XC8 does not implement the __eeprom qualifiers for any PIC18 devices; this
qualifier works as expected for other 8-bit devices.
 2012-2018 Microchip Technology Inc. DS50002071G-page 39

MPLAB® XC16 C Compiler User’s Guide
2.5.10 Interrupt Functions

The __interrupt(type) specifier can be used to indicate that a function is to act as
an interrupt service routine. The type is a comma-separated list of keywords that
indicate information about the interrupt function.

The current interrupt types are:

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

Some devices may not implement interrupts. Use of this qualifier for such devices
generates a warning. If the argument to the __interrupt specifier does not make
sense for the target device, a warning or error is issued by the compiler.

2.5.10.1 EXAMPLE

The following example shows a function qualified using __interrupt.

__interrupt(low_priority) void getData(void) {
if (TMR0IE && TMR0IF) {

TMR0IF=0;
++tick_count;

}
}

<empty> Implement the default interrupt function.

low_priority The interrupt function corresponds to the low priority interrupt
source.
(MPLAB XC8 - PIC18 only)

high_priority The interrupt function corresponds to the high priority interrupt
source.
(MPLAB XC8)

save(symbol-list) Save the listed symbols on entry, and restore on exit.
(MPLAB XC16)

irq(irqid) Specify the interrupt vector associated with this interrupt.
(MPLAB XC16 and XC8)

altirq(altirqid) Specify the alternate interrupt vector associated with this
interrupt.
(MPLAB XC16)

base(address) Specify vector table address.
(MPLAB XC8)

preprologue(asm) Specify assembly code to be executed before any
compiler-generated interrupt code.
(MPLAB XC16)

shadow Allow the ISR to utilize the shadow registers for context
switching.
(MPLAB XC16)

auto_psv The ISR will set the PSVPAG register and restore it on exit.
(MPLAB XC16)

no_auto_psv The ISR will not set the PSVPAG register.
(MPLAB XC16)
DS50002071G-page 40 2012-2018 Microchip Technology Inc.

Common C Interface
2.5.10.2 DIFFERENCES

The 8-bit compilers have used the interrupt and low_priority qualifiers to
indicate this meaning for some devices. Interrupt routines were, by default, high priority.
The __interrupt() specifier may now be used outside of the CCI.

The 16- and 32-bit compilers have used the interrupt attribute to define interrupt
functions.

2.5.10.3 MIGRATION TO THE CCI

For 8-bit compilers, change any occurrence of the interrupt qualifier, e.g., from:

void interrupt myIsr(void)
void interrupt low_priority myLoIsr(void)

to the following, respectively:

void __interrupt(high_priority) myIsr(void)
void __interrupt(low_priority) myLoIsr(void)

For 16-bit compilers, change any occurrence of the interrupt attribute, e.g., from:

void _attribute_((interrupt(auto_psv,irq(52))))
_T1Interrupt(void);

to:

void __interrupt(auto_psv,irq(52))) _T1Interrupt(void);

For 32-bit compilers, the __interrupt() keyword takes two parameters, the vector
number and the (optional) IPL value. Change code that uses the interrupt attribute,
similar to these examples:

void __attribute__((vector(0), interrupt(IPL7AUTO), nomips16))
myisr0_7A(void) {}

void __attribute__((vector(1), interrupt(IPL6SRS), nomips16))
myisr1_6SRS(void) {}

/* Determine IPL and context-saving mode at runtime */
void __attribute__((vector(2), interrupt(), nomips16))
myisr2_RUNTIME(void) {}

to:

void __interrupt(0,IPL7AUTO) myisr0_7A(void) {}

void __interrupt(1,IPL6SRS) myisr1_6SRS(void) {}

/* Determine IPL and context-saving mode at runtime */
void __interrupt(2) myisr2_RUNTIME(void) {}

2.5.10.4 CAVEATS

None.
 2012-2018 Microchip Technology Inc. DS50002071G-page 41

MPLAB® XC16 C Compiler User’s Guide
2.5.11 Packing Objects

The __pack specifier can be used to indicate that structures should not use memory
gaps to align structure members, or that individual structure members should not be
aligned.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

Some compilers cannot pad structures with alignment gaps for some devices, and use
of this specifier for such devices is ignored.

2.5.11.1 EXAMPLE

The following example shows a structure qualified using __pack, as well as a structure
where one member has been explicitly packed.

__pack struct DATAPOINT {
unsigned char type;
int value;

} x-point;
struct LINETYPE {

unsigned char type;
__pack int start;
long total;

} line;

2.5.11.2 DIFFERENCES

The __pack specifier is a new CCI specifier that is available with MPLAB XC8. This
specifier has no apparent effect since the device memory is byte addressable for all
data objects.

 The 16- and 32-bit compilers have used the packed attribute to indicate that a
structure member was not aligned with a memory gap.

2.5.11.3 MIGRATION TO THE CCI

No migration is required for MPLAB XC8.

For 16- and 32-bit compilers, change any occurrence of the packed attribute, e.g.,
from:

struct DOT
{

char a;
int x[2] __attribute__ ((packed));

};

to:

struct DOT
{

char a;
__pack int x[2];

};

Alternatively, you can pack the entire structure, if required.

2.5.11.4 CAVEATS

None.
DS50002071G-page 42 2012-2018 Microchip Technology Inc.

Common C Interface
2.5.12 Indicating Antiquated Objects

The __deprecate specifier can be used to indicate that an object has limited longev-
ity and should not be used in new designs. It is commonly used by the compiler vendor
to indicate that compiler extensions or features can become obsolete, or that better
features have been developed and should be used in preference.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

2.5.12.1 EXAMPLE

The following example shows a function that uses the __deprecate keyword.

void __deprecate getValue(int mode)
{
//...
}

2.5.12.2 DIFFERENCES

No deprecate feature was implemented on 8-bit compilers.

The 16- and 32-bit compilers have used the deprecated attribute (note the different
spelling) to indicate that objects should be avoided, if possible.

2.5.12.3 MIGRATION TO THE CCI

For 16- and 32-bit compilers, change any occurrence of the deprecated attribute to
__deprecate, e.g., from:

int __attribute__(deprecated) intMask;

to:

int __deprecate intMask;

2.5.12.4 CAVEATS

None.

2.5.13 Assigning Objects to Sections

The __section() specifier can be used to indicate that an object should be located
in the named section (or psect, using MPLAB XC8 terminology). This is typically used
when the object has special and unique linking requirements that cannot be addressed
by existing compiler features.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this specifier.

2.5.13.1 EXAMPLE

The following example shows a variable which uses the __section keyword.

int __section("comSec") commonFlag;

2.5.13.2 DIFFERENCES

The 8-bit compilers have previously used the #pragma psect directive to redirect
objects to a new section, or psect; however, the __section() specifier is the
preferred method to perform this task, even if you are not using the CCI.

The 16- and 32-bit compilers have used the section attribute to indicate a different
destination section name. The __section() specifier works in a similar way to the
attribute.
 2012-2018 Microchip Technology Inc. DS50002071G-page 43

MPLAB® XC16 C Compiler User’s Guide
2.5.13.3 MIGRATION TO THE CCI

For MPLAB XC8, change any occurrence of the #pragma psect directive, such as:

#pragma psect text%%u=myText
int getMode(int target) {
//...
}

to the __section() specifier, as in:

int __section ("myText") getMode(int target) {
//...
}

For 16- and 32-bit compilers, change any occurrence of the section attribute, e.g.,
from:

int __attribute__((section("myVars"))) intMask;

to:

int __section("myVars") intMask;

2.5.13.4 CAVEATS

None.

2.5.14 Specifying Configuration Bits

The #pragma config directive can be used to program the Configuration bits for a
device. The pragma has the form:

#pragma config setting = state|value

where setting is a configuration setting descriptor (e.g., WDT), state is a descriptive
value (e.g., ON) and value is a numerical value.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this directive.

2.5.14.1 EXAMPLE

The following example shows Configuration bits being specified using this pragma.

#pragma config WDT=ON, WDTPS = 0x1A

2.5.14.2 DIFFERENCES

The 8-bit compilers have used the __CONFIG() macro for some targets that did not
already have support for the #pragma config.

The 16-bit compilers have used a number of macros to specify the configuration
settings.

The 32-bit compilers supported the use of #pragma config.
DS50002071G-page 44 2012-2018 Microchip Technology Inc.

Common C Interface
2.5.14.3 MIGRATION TO THE CCI

For the 8-bit compilers, change any occurrence of the __CONFIG() macro, e.g.,

__CONFIG(WDTEN & XT & DPROT)

to the #pragma config directive, e.g.,

#pragma config WDTE=ON, FOSC=XT, CPD=ON

No migration is required if the #pragma config was already used.

For the 16-bit compilers, change any occurrence of the _FOSC() or _FBORPOR()
macros attribute, e.g., from:

_FOSC(CSW_FSCM_ON & EC_PLL16);

to:

#pragma config FCKSMEM = CSW_ON_FSCM_ON, FPR = ECIO_PLL16

No migration is required for 32-bit code.

2.5.14.4 CAVEATS

None.

2.5.15 Manifest Macros

The CCI defines the general form for macros that manifest the compiler and target
device characteristics. These macros can be used to conditionally compile alternate
source code based on the compiler or the target device.

The macros and macro families are details in Table 2-1.

2.5.15.1 EXAMPLE

The following example shows code that is conditionally compiled dependent on the
device having EEPROM memory.

#ifdef __XC16__
void __interrupt(__auto_psv__) myIsr(void)
#else
void __interrupt(low_priority) myIsr(void)
#endif

2.5.15.2 DIFFERENCES

Some of these CCI macros are new (for example __CCI__), and others have different
names to previous symbols with identical meaning (e.g., __18F452 is now
__18F452__).

TABLE 2-1: MANIFEST MACROS DEFINED BY THE CCI

Name Meaning if defined Example

__XC__ Compiled with an MPLAB XC compiler __XC__

__CCI__ Compiler is CCI compliant and CCI enforce-
ment is enabled

__CCI__

__XC##__ The specific XC compiler used (## can be 8,
16 or 32)

__XC8__

__DEVICEFAMILY__ The family of the selected target device __dsPIC30F__

__DEVICENAME__ The selected target device name __18F452__
 2012-2018 Microchip Technology Inc. DS50002071G-page 45

MPLAB® XC16 C Compiler User’s Guide
2.5.15.3 MIGRATION TO THE CCI

Any code that uses compiler-defined macros needs review. Old macros will continue to
work as expected, but they are not compliant with the CCI.

2.5.15.4 CAVEATS

None.

2.5.16 In-line Assembly

The asm() statement can be used to insert assembly code in-line with C code. The
argument is a C string literal that represents a single assembly instruction. Obviously,
the instructions contained in the argument are device specific.

Use the native keywords discussed in the Differences section to look up information on
the semantics of this statement.

2.5.16.1 EXAMPLE

The following example shows a MOVLW instruction being inserted in-line.

asm("MOVLW _foobar");

2.5.16.2 DIFFERENCES

The 8-bit compilers have used either the asm() or #asm ... #endasm constructs to
insert in-line assembly code.

This is the same syntax used by the 16- and 32-bit compilers.

2.5.16.3 MIGRATION TO THE CCI

For 8-bit compilers, change any instance of #asm ... #endasm, so that each instruction
in the #asm block is placed in its own asm()statement, e.g., from:

#asm
MOVLW 20
MOVWF _i
CLRF Ii+1

#endasm

to:

asm("MOVLW20");
asm("MOVWF _i");
asm("CLRFIi+1");

No migration is required for the 16- or 32-bit compilers.

2.5.16.4 CAVEATS

None.
DS50002071G-page 46 2012-2018 Microchip Technology Inc.

Common C Interface
2.6 COMPILER FEATURES

The following item details the compiler options used to control the CCI.

2.6.1 Enabling the CCI

It is assumed that you are using the MPLAB X IDE to build projects that use the CCI.
The widget in the MPLAB X IDE Project Properties is used to enable CCI conformance
CCI Syntax in the Compiler category.

If you are not using this IDE, then the command-line options are --EXT=cci for
MPLAB XC8 or -mcci for MPLAB XC16 and XC32.

2.6.1.1 DIFFERENCES

This option has never been implemented previously.

2.6.1.2 MIGRATION TO THE CCI

Enable the option.

2.6.1.3 CAVEATS

None.
 2012-2018 Microchip Technology Inc. DS50002071G-page 47

MPLAB® XC16 C Compiler User’s Guide
NOTES:
DS50002071G-page 48 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 3. How To’s
3.1 INTRODUCTION

This section contains help and references for situations that are frequently encountered
when building projects with Microchip 16-bit devices. Click the links at the beginning of
each section to assist in finding the topic relevant to your question. Some topics are
indexed in multiple sections.

Start Here

• Installing and Activating the Compiler

• Invoking the Compiler

• Writing Source Code

• Getting My Application to Do What I Want

• Understanding the Compilation Process

• Fixing Code That Does Not Work

3.2 INSTALLING AND ACTIVATING THE COMPILER

This section details questions that might arise when installing or activating the compiler.

• How Do I Install and Activate My Compiler?

• How Can I Tell If the Compiler Has Installed and Activated Successfully?

• Can I Install More Than One Version of the Same Compiler?

3.2.1 How Do I Install and Activate My Compiler?

Installation of the license is performed by the XC compiler installer. Activation is avail-
able online through mySoftware. For full instructions, refer to the following document.
It is available for download from the Microchip Technology website,
http://www.microchip.com.

“Installing and Licensing MPLAB® XC C Compilers” (DS52059)

3.2.2 How Can I Tell If the Compiler Has Installed and Activated
Successfully?

To verify installation and activation of the compiler, you must compile code. You can use
the example code that comes with the compiler. It is located, by default, in the following
folder: c:\Program Files\Microchip\xc16\examples

Depending on your operating system, find the file run_hello.bat (Windows OS) or
run_hello.sh (Mac/Linux OS) in the xc16_getting_started folder. Edit the opti-
mization level for your expected license level. For more information, see the following
chapter and section in this user’s guide:

Chapter 18. “Optimizations”

Section 5.7.6 “Options for Controlling Optimization”

Run the edited batch or shell file. If the tools are installed correctly, the output should
show the various steps in the compilation and execution process, ending with the text:
Hello, world!
 2012-2018 Microchip Technology Inc. DS50002071G-page 49

http://www.microchip.com

MPLAB® XC16 C Compiler User’s Guide
3.2.3 Can I Install More Than One Version of the Same Compiler?

The compilers and installation process have been designed to allow you to have more
than one version of the same compiler installed. In MPLAB X IDE, you can easily switch
between compiler versions by changing options in the IDE. For details, see the follow-
ing section in this user’s guide:

Section 3.3.3 “How Can I Select Which Compiler Version to Build With?”

Compilers should be installed into a directory that is named according to the compiler
version. This is reflected in the default directory specified by the installer. For example,
the MPLAB XC16 compilers v1.00 and v1.10 would typically be placed in separate
directories, as shown below:

C:\Program Files\Microchip\xc16\v1.00\
C:\Program Files\Microchip\xc16\v1.10\
DS50002071G-page 50 2012-2018 Microchip Technology Inc.

How To’s
3.3 INVOKING THE COMPILER

This section discusses how the compiler is run from the command line and from the
IDE. Information about how to use compiler options and the build process to achieve
maximum results from the compiler are also included.

• How Do I Compile from Within MPLAB X IDE?

• How Do I Compile on the Command Line?

• How Can I Select Which Compiler Version to Build With?

• How Can I Change the Compiler Optimizations?

• How Do I Know Which Optimization Features I Get?

• How Do I Know Which Compiler Options Are Available and What They Do?

• How Do I Build Libraries?

• How Do I Know What the Build Options in MPLAB X IDE Do?

• What is Different About an MPLAB X IDE Debug Build?

• See also, Why No Disassembly in the MPLAB X IDE Disassembly Window?

• See also, Which Libraries Get Included by Default?

• See also, How Do I Stop the Compiler from Using Certain Memory Locations?

3.3.1 How Do I Compile from Within MPLAB X IDE?

In MPLAB X IDE you compile your code by building a project.

For more on using the compiler with MPLAB X IDE, see the following chapter and
section in this user’s guide:

Chapter 4. “XC16 Toolchain and MPLAB X IDE”

Section 3.3.3 “How Can I Select Which Compiler Version to Build With?”

3.3.2 How Do I Compile on the Command Line?

To compile code on the command line, refer to the following chapter and section in this
user’s guide:

Chapter 5. “Compiler Command-Line Driver”

Section 3.3.3 “How Can I Select Which Compiler Version to Build With?”

3.3.3 How Can I Select Which Compiler Version to Build With?

Both the compilation and installation processes were designed to allow you to have
more than one compiler version installed at the same time.

In MPLAB X IDE, select the compiler to use for building a project by opening the Project
Properties window (File>Project Properties) and selecting the Configuration category
(Conf: [default]). A list of MPLAB XC16 compiler versions is shown in the Com-
piler Toolchain, on the far right of the window. Select the MPLAB XC16 compiler you
require.

Once selected, the controls for that compiler are shown by selecting the XC16 global
options, XC16 Compiler, and XC16 Linker categories. These reveal a pane of options
on the right; with each category having several panes which can be selected from a
pull-down menu that is near the top of the pane.
 2012-2018 Microchip Technology Inc. DS50002071G-page 51

MPLAB® XC16 C Compiler User’s Guide
3.3.4 How Can I Change the Compiler Optimizations?

You can only select optimizations that your license entitles you to use. For more on
compiler licenses, related optimizations, and setting optimizations, see the following
chapter and section in this user’s guide:

Chapter 18. “Optimizations”

Section 5.7.6 “Options for Controlling Optimization”

3.3.5 How Do I Know Which Optimization Features I Get?

When you select an optimization level, you get several optimization features. These
features are tabulated in the following section of this user’s guide:

Section 18.2 “Optimization Feature Summary”

3.3.6 How Do I Know Which Compiler Options Are Available and
What They Do?

A list of all compiler options can be found in the following section of this user’s guide:

Section 5.7 “Driver Option Descriptions”

3.3.7 How Do I Build Libraries?

For information on how to create and build your own libraries, see the following
sections of this user’s guide:

Section 5.4.1.2 “User-Defined Libraries”

Section 5.4.1.3 “User-Defined Libraries Development”

3.3.8 How Do I Know What the Build Options in MPLAB X IDE Do?

Most of the widgets and controls in the MPLAB X IDE Project Properties window, XC16
options, map directly to a corresponding command-line driver option or suboption. For
a list of options and any corresponding command-line options, refer to the following
section of this user’s guide:

Section 4.5 “Project Setup”

3.3.9 What is Different About an MPLAB X IDE Debug Build?

MPLAB X IDE needs to use extra memory for a debug build, as debugging requires
additional resources. See MPLAB X IDE documentation for details.
DS50002071G-page 52 2012-2018 Microchip Technology Inc.

How To’s
3.4 WRITING SOURCE CODE

This section presents issues that pertain to the source code you write. It has been
subdivided into sections listed below.

• C Language Specifics

• Device-Specific Features

• Memory Allocation

• Variables

• Functions

• Interrupts

• Assembly Code

3.4.1 C Language Specifics

The MPLAB XC16 C compiler is an ANSI C compliant compiler and therefore follows
standard C language conventions. For more information, see the following section in
this user’s guide:

Section 1.3.1 “ANSI C Standard”

3.4.2 Device-Specific Features

This section discusses the code that needs to be written to set up or control a feature
that is specific to Microchip devices.

• How Do I Port My Code to Different Device Architectures?

• How Do I Set the Configuration Bits?

• How Do I Access the User ID Locations?

• How Do I Access Special Function Registers (SFRs)?

• Are There Any SFRs Usage Considerations?

• Which Device-Specific Symbols Does the Compiler Define, and Can I Use Them?

• See also, How Do I Stop the Compiler from Using Certain Memory Locations?

3.4.2.1 HOW DO I PORT MY CODE TO DIFFERENT DEVICE
ARCHITECTURES?

To reduce the work required to port code between architectures, a Common C Interface
(CCI) has been developed. If you use these coding styles, your code will more easily
migrate upward. For more on CCI, see the following chapter in this user’s guide:

Chapter 2. “Common C Interface”

3.4.2.2 HOW DO I SET THE CONFIGURATION BITS?

These should be set in your code by using either a macro or pragma. Earlier versions
of MPLAB IDE allowed you to set these bits in a dialog, but MPLAB X IDE requires that
they be specified in your source code. See the following section in this user’s guide:

Section 6.5 “Configuration Bit Access”
 2012-2018 Microchip Technology Inc. DS50002071G-page 53

MPLAB® XC16 C Compiler User’s Guide
3.4.2.3 HOW DO I ACCESS THE USER ID LOCATIONS?

Currently, the only way to access a device (or family) ID location is to specify the fixed
address of the device-ID register(s). There is not a supplied macro or pragma at this
time. Consult your device data sheet for the address of the device-ID register(s).

3.4.2.4 HOW DO I ACCESS SPECIAL FUNCTION REGISTERS (SFRs)?

The compiler is distributed with header files that define variables. The variables are
mapped over the top of memory-mapped SFRs. Since these are C variables, they can
be used like any other C variables. No new syntax is required to access these registers.

The names of these variables should be the same as those indicated in the data sheet
for the device you are using.

Bits within SFRs can also be accessed. Bit-fields are available in structures which map
over the SFR as a whole. For example, PORTCbits.RC1 means the RC1 bit of PORTC.
For more on header files, see the following section in this user’s guide:

Section 6.3 “Device Header Files”

3.4.2.5 ARE THERE ANY SFRs USAGE CONSIDERATIONS?

The dsPIC architecture defines various Special Function Registers that control hard-
ware peripherals or other aspects of the machine. In general these SFRs are accessed
like other C variables.

Some SFRs represent memory mapped versions of CPU registers that the compiler
depends upon. These registers should not be written to by a C program as this could
silently damage the operation of the application, especially at higher optimization lev-
els. Registers that should be avoided include: the memory mapped copies of the work-
ing registers (WREG0, WREG1 and so on), parts of CORCON, ACCAx, and ACCBx.

Like luggage at an airport, many SFRs look alike. That is to say, there are subtle differ-
ences between some peripheral registers from device to device. When compiling code
for a generic device, avoid referring to SFR registers.

3.4.2.6 WHICH DEVICE-SPECIFIC SYMBOLS DOES THE COMPILER DEFINE,
AND CAN I USE THEM?

The compiler defines some device-specific, and other, symbols or macros. They are
discussed in the following section in this user’s guide:

Section 19.4 “Predefined Macro Names”
DS50002071G-page 54 2012-2018 Microchip Technology Inc.

How To’s
3.4.3 Memory Allocation

These questions relate to the way in which your source code affects memory allocation.

• How Do I Position Variables or Functions at an Address I Nominate?

• How Do I Place Variables in Program Memory?

• How Do I Allocate Space for a Variable But Not Initialize/Load Any Value?

• How Do I Stop the Compiler from Using Certain Memory Locations?

3.4.3.1 HOW DO I POSITION VARIABLES OR FUNCTIONS AT AN ADDRESS I
NOMINATE?

Nudging the tool chain to allocate variables or functions in specific areas of memory
can make it harder for the linker to do its job. Tools are provided to solve problems that
may exist, but they should always be used carefully. For example, instead of fixing an
object at a specific address (using the address attribute or the __at construct), it may
be sufficient to group variables together using the section attribute.

3.4.3.2 HOW DO I PLACE VARIABLES IN PROGRAM MEMORY?

For information on how to place variables in program memory space, refer to the
following section in this user’s guide:

Section 10.4 “Variables in Program Space”

3.4.3.3 HOW DO I ALLOCATE SPACE FOR A VARIABLE BUT NOT
INITIALIZE/LOAD ANY VALUE?

To allocate memory space for a variable without initializing or loading the variable in
memory, you can use the noload attribute. For more on variable attributes, see the
following section in this user’s guide:

Section 8.11 “Variable Attributes”

3.4.3.4 HOW DO I STOP THE COMPILER FROM USING CERTAIN MEMORY
LOCATIONS?

Concatenating an address attribute with the noload attribute can be used to block
out sections of memory. For more on variable attributes and options, see the following
sections in this user’s guide:

Section 8.11 “Variable Attributes”

Section 5.7.1 “Options Specific to 16-Bit Devices”

Also, you can use the option -mreserve. See the MPLAB® XC16 Assembler, Linker
and Utilities User’s Guide (DS50002106).
 2012-2018 Microchip Technology Inc. DS50002071G-page 55

MPLAB® XC16 C Compiler User’s Guide
3.4.4 Variables

This section includes questions that relate to the definition and usage of variables and
types within a program.

• Why Are My Floating-point Results Not Quite What I Am Expecting?

• How Do I Retain the Value of a Variable Even After a Soft Reset?

• How Do I Save C Variables When an ISR Is Invoked?

• How Long Can I Make My Variable and Macro Names?

• How Do I Access Values Stored in a PSV or EDS Page?

• Why Would I Need to Place Data Into Its Own Section?

• How Can I Load a Value Into Flash Memory?

• How Can I Pack Data Into Flash Memory?

• How Can I Define a Large Array?

• See also, How Do I Share Data Between Interrupt and Main-line Code?

• See also, How Do I Position Variables or Functions at an Address I Nominate?

• See also, How Do I Place Variables in Program Memory?

• See also, How Do I Place Variables in Off-Chip Memory?

• See also, How Can I Rotate a Variable?

• See also, How Do I Learn Where Variables and Functions Have Been Positioned?

3.4.4.1 WHY ARE MY FLOATING-POINT RESULTS NOT QUITE WHAT I AM
EXPECTING?

First, ensure that you are using the floating-point data types that you intend. We rec-
ommend using the types long double, explicitly in your program, when IEEE double
precision (64 bit) format floating-point values are desired, and float when IEEE single
precision (32 bit) format values are desired. By default, the compiler uses IEEE single
precision format for the type double. Use the -fno-short-double switch to specify
IEEE double precision (64 bit) format for the type double.

Next, be aware of the limitations of the floating-point formats and the effects of round-
ing. Not all real numbers can be represented exactly in the floating-point formats. For
example, the fraction 1/10 cannot be represented exactly in either the single or double
precision formats.

If the result of a load or a computation is 1/10, the value stored in the floating-point for-
mat will be the closest approximation representable in that format. In such cases, it is
said that the “true” value has been “rounded” to the nearest approximation, according
to the rules of the IEEE arithmetic. This small discrepancy in a value that is introduced
early in a computation can accumulate over many operations and produce noticeable
error. In general, computations may start from numbers that are exactly representable
(like 1 and 10), and yield results that are not (like 1/10). This is not due to the compiler's
choice of code generated, nor any specifics of the microprocessor architecture, but
rather an essential characteristic the IEEE floating-point formats and rules of arithme-
tic. Any compiler/microprocessor platform faces the same issues. For more informa-
tion, see the following section in this user’s guide:

Section 8.4 “Floating-Point Data Types”
DS50002071G-page 56 2012-2018 Microchip Technology Inc.

How To’s
3.4.4.2 HOW DO I RETAIN THE VALUE OF A VARIABLE EVEN AFTER A SOFT
RESET?

First, consult your device data sheet to see which Resets are available. Then save the
values of your variables after a software Reset, using the persistent attribute, which
specifies that the variable should not be initialized or cleared at startup. For more on
this attribute, see the following section in this user’s guide:

Section 8.11 “Variable Attributes”.

3.4.4.3 HOW DO I SAVE C VARIABLES WHEN AN ISR IS INVOKED?

You can use the save parameter of the interrupt attribute to save variables and
SFRs so that their values may be restored on a return from interrupt. For more infor-
mation, see the following section in this user’s guide:

Section 14.5 “Interrupt Service Routine Context Saving”

3.4.4.4 HOW LONG CAN I MAKE MY VARIABLE AND MACRO NAMES?

For MPLAB XC16, no limit is imposed; but for CCI there is a limit. For details, see the
following section in this user’s guide:

Section 2.4.5 “The Number of Significant Initial Characters in an Identifier”

3.4.4.5 HOW DO I ACCESS VALUES STORED IN A PSV OR EDS PAGE?

16-bit devices have a method of accessing data memory from within Flash memory
called Program Space Visibility (PSV). You can access values in PSV memory by using
the __psv__ qualifier. Another method to access data space from program memory is
called Extended Data Space (EDS). You can access values in EDS by using the
__eds__ qualifier. For more on each of these qualifiers, see the following sections in
this user’s guide:

Section 8.10.1 “__psv__ Type Qualifier”

Section 8.10.3 “__eds__ Type Qualifier”

3.4.4.6 WHY WOULD I NEED TO PLACE DATA INTO ITS OWN SECTION?

The MPLAB XC16 Object Linker will place data into sections efficiently. However, you
may want to manually place groups of variables into sections because it is easier than
manually placing each individual variable at a specific address. If necessary, absolute
starting addresses may be specified in user-defined sections within the device linker
script. To place data into its own section, you can use the section attribute, discussed
in the following section in this user’s guide:

Section 8.11 “Variable Attributes”

To edit user-defined sections within the linker script, see the following document. It is
available for download from the Microchip Technology website, www.microchip.com.

“MPLAB® XC16 Assembler, Linker, and Utilities User's Guide” (DS50002106),
Section 9.5 “Contents of a Linker Script”
 2012-2018 Microchip Technology Inc. DS50002071G-page 57

MPLAB® XC16 C Compiler User’s Guide
3.4.4.7 HOW CAN I LOAD A VALUE INTO FLASH MEMORY?

The compiler provides different ways of defining Flash variables.

• A variable can be explicitly placed into Flash using an appropriate space attribute.

• Variables are implicitly placed into Flash in the default const-in-code memory
model if they have the C const type qualifier.

These differences allow you to choose how much work you want to do to access vari-
ables, and how much you want the compiler to do. The compiler has the least to do
when you simply specify the attribute space(prog), and the initial value; which leaves
the access (usually via tblrd instructions) up to you, the programmer. The compiler
has the most to do when you combine the space(prog) attribute with an appropriate
access qualifier, such as __eds__ or __prog__.

Also, there is often a single page of Flash space dedicated to const qualified objects.
See -mconst-in-code in the following sections of this user’s guide for more details:

Section 8.11 “Variable Attributes”

Section 10.4 “Variables in Program Space”

3.4.4.8 HOW CAN I PACK DATA INTO FLASH MEMORY?

To specify the upper byte of variables stored into space(prog) sections, you can use
either the -mfillupper option or the fillupper variable attribute. See the following
sections of this user’s guide for more information:

Section 5.7.1 “Options Specific to 16-Bit Devices” (-mfillupper)

Section 8.11 “Variable Attributes” (fillupper)

3.4.4.9 HOW CAN I DEFINE A LARGE ARRAY?

By default, arrays are allocated 32K of memory. If you need more, you can use the
compiler option -mlarge-arrays, remembering that there will be a memory cost. For
more on the option, see the following section of this user’s guide:

Section 10.3.2.3 “Non-Auto Variable Size Limits”
DS50002071G-page 58 2012-2018 Microchip Technology Inc.

How To’s
3.4.5 Functions

This section includes questions that relate to functions.

• How Do I Stop A Function From Being Removed?

• Why Should I Inline My Function?

• Why is My Function Not Inline?

• Why Should I Place a Function Into its Own Section?

• How Do I Prevent the Compiler From Saving or Restoring Any Registers?

• How Can I Tell if a Function is Being Used?

• How Can I Find Out Which Functions are Contained Inside of the Compiler?

• Where are Arguments That Are Passed to Functions Located in Memory?

• See also, How Can I Tell How Big a Function Is?

• See also, How Do I Learn Where Variables and Functions Have Been Positioned?

• See also, How Do I Use Interrupts in C?

3.4.5.1 HOW DO I STOP A FUNCTION FROM BEING REMOVED?

Apply the attribute keep to a function to prevent the linker from removing it with
--gc-sections, even when the function is unused. See the following section on
keep of this user’s guide:

Section 13.2.2 “Function Attributes”

3.4.5.2 WHY SHOULD I INLINE MY FUNCTION?

The reason why you might want to inline your function and how you would do so are
discussed in the following section of this user’s guide:

Section 13.6 “Inline Functions”

3.4.5.3 WHY IS MY FUNCTION NOT INLINE?

Unless you use the inline keyword to specifically inline a function, the compiler will
make the decision about which functions to inline. In general, small functions are
inlined whereas larger ones are not. For details, see the following section of this user’s
guide:

Section 13.6 “Inline Functions”

3.4.5.4 WHY SHOULD I PLACE A FUNCTION INTO ITS OWN SECTION?

The MPLAB XC16 Object Linker will place functions into sections efficiently. Since
manual placement of functions into program memory may reduce the linker's ability to
do this with maximum efficiency, most applications should not include manual place-
ment of functions into program memory. However, bootloader applications are special.
They require application firmware to reside higher in memory than the bootloader,
which requires manual placement of functions to avoid conflicts with the bootloader
application.

Also, applications that require code placement in secure sections need custom place-
ment of program functions using the boot or secure attributes. Address attributes can
be applied to functions, as well.

To place a function into its own section with the section attribute, to place a function
with the boot or secure attributes, or to place a function with an address attribute,
see the following section of this user’s guide:

Section 13.2.2 “Function Attributes”
 2012-2018 Microchip Technology Inc. DS50002071G-page 59

MPLAB® XC16 C Compiler User’s Guide
3.4.5.5 HOW DO I PREVENT THE COMPILER FROM SAVING OR RESTORING
ANY REGISTERS?

If you do not want register values saved or restored after an interrupt or Reset, you can
use the naked attribute. This attribute should be used with care though, because you
generally want to save these values. For details, see the following section of this user’s
guide:

Section 13.2.2 “Function Attributes”

3.4.5.6 HOW CAN I TELL IF A FUNCTION IS BEING USED?

After the project has built, view the map file for a listing of used functions. Use the linker
option --gc-sections to ensure unused functions are removed. For details, see the
following section of this user’s guide:

Section 13.2.2 “Function Attributes”

For more on the linker, see the following document. It is available for download from
the Microchip Technology website, www.microchip.com.

“MPLAB® XC16 Assembler, Linker, and Utilities User's Guide” (DS50002106).

3.4.5.7 HOW CAN I FIND OUT WHICH FUNCTIONS ARE CONTAINED INSIDE
OF THE COMPILER?

You can see compiler predefined symbols/macros and functions by running, and
stopping the preprocessor, and then examining the output. Options to do this are dis-
cussed in the following section of this user’s guide:

Section 5.7.2 “Options for Controlling the Kind of Output”

3.4.5.8 WHERE ARE ARGUMENTS THAT ARE PASSED TO FUNCTIONS
LOCATED IN MEMORY?

You will need to run compiler code to determine this. See the application binary inter-
face when running the compiler. Some built-ins may also be helpful. See the following
location of this user’s guide:

Appendix G. “Built-in Functions”
DS50002071G-page 60 2012-2018 Microchip Technology Inc.

How To’s
3.4.6 Interrupts

Interrupt and interrupt service routine (ISR) questions are discussed in this section.

• How Do I Use Interrupts in C?

• How Do I Add a Trap Interrupt Vector to a Project?

• Can/Should My Application be able to Return from a Trap?

• How Do I Share Data between Two Interrupt Routines?

• What is the Default Interrupt, Where is it Defined, and How Do I Use It?

• See also, How Can I Make My Interrupt Routine Faster?

• See also, How Do I Share Data Between Interrupt and Main-line Code?

• See also, How Do I Save C Variables When an ISR Is Invoked?

3.4.6.1 HOW DO I USE INTERRUPTS IN C?

First, be aware of the interrupt hardware that is available on your target device. 16-bit
devices implement several separate interrupt vector locations and use a priority
scheme. See your device data sheet for details. Then, review the following chapter of
this user’s guide for more information:

Chapter 14. “Interrupts”

3.4.6.2 HOW DO I ADD A TRAP INTERRUPT VECTOR TO A PROJECT?

The compiler treats hard traps the same as normal interrupt vectors, as they have
names just like the handlers for peripherals. A useful place to find all the interrupt func-
tions supported by a particular device is in the docs folder of your install:
vector_index.html.

The general format is:

 void __attribute__((interrupt)) ISR_fn_name(void) {
 }

3.4.6.3 CAN/SHOULD MY APPLICATION BE ABLE TO RETURN FROM A
TRAP?

This question is very specific to the application/trap. The general answer is that the
application should probably safely restart when such an event occurs.

3.4.6.4 HOW DO I SHARE DATA BETWEEN TWO INTERRUPT ROUTINES?

By their very nature, ISRs do not send results or receive parameters. The only way to
share data is by using common data sharing procedures. Examples of these would be
by volatile global variables or via specialized accessor functions, which can carefully
control access to data, and make your application more robust.

Whenever data is shared across different threads of control, which is really what a inter-
rupt routine is, it is important that the shared data accesses are protected from further
interruption as not all accesses are atomic.

3.4.6.5 WHAT IS THE DEFAULT INTERRUPT, WHERE IS IT DEFINED, AND
HOW DO I USE IT?

The “default interrupt” fills in the vector table when no other named vector exists. If it is
not defined, the compiler will create one that will halt in a debugging environment or
Reset in a normal execution (non-debug) environment.

You can define your own handler by simply defining an ISR named:
_DefaultInterrupt.
 2012-2018 Microchip Technology Inc. DS50002071G-page 61

MPLAB® XC16 C Compiler User’s Guide
3.4.7 Assembly Code

This section examines questions that arise when writing assembly code as part of a C
project.

• How Should I Combine Assembly and C Code?

• What Do I Need Other Than Instructions In an Assembly Source File?

• How Do I Access C Objects from Assembly Code?

• How Can I Access SFRs From Within Assembly Code?

• When Should I Combine Assembly and C Code?

• What Is the Difference Between .s and .S Files?

• How Do I Make a Function Wrapper For an Assembly Module?

• When Should Inline Assembly Be Used Instead of Assembly Modules?

3.4.7.1 HOW SHOULD I COMBINE ASSEMBLY AND C CODE?

Assembly code can be written as separate functions that are called from C code or as
inline from within the C code. For details, see the following chapter of this user’s guide:

Chapter 16. “Mixing C and Assembly Code”

3.4.7.2 WHAT DO I NEED OTHER THAN INSTRUCTIONS IN AN ASSEMBLY
SOURCE FILE?

Assembly code typically needs assembler directives, as well as the instructions them-
selves. The operation of these directives is described in the following document. It is
available for download from the Microchip Technology website, www.microchip.com.

“MPLAB® XC16 Assembler, Linker and Utilities User’s Guide” (DS50002106).

There are two directives that are commonly used in assembly code. The first one is the
.section directive. All assembly code must be placed in a section using this directive,
so that it can be manipulated as a whole by the linker, and placed into memory. The
second one is the .global directive. This directive is used to make symbols
accessible across multiple source files.

3.4.7.3 HOW DO I ACCESS C OBJECTS FROM ASSEMBLY CODE?

Most C objects are accessible from assembly code. There is a mapping between the
symbols used in the C source and those used in the assembly code generated from
this source. Your assembly should access the assembly-equivalent symbols which are
detailed in the following section of this user’s guide:

Section 16.2 “Mixing Assembly Language and C Variables and Functions”

3.4.7.4 HOW CAN I ACCESS SFRS FROM WITHIN ASSEMBLY CODE?

The easiest way to gain access to SFRs in assembly code is to use the device-generic
include file (xc.h) that equates symbols to the corresponding SFR address.

There is no guarantee that you will be able to access symbols generated by the com-
pilation of C code, even if it is code that accesses the SFR that you require. See the
following section of this user’s guide:

Section 13.8 “Function Call Conventions”
DS50002071G-page 62 2012-2018 Microchip Technology Inc.

How To’s
3.4.7.5 WHEN SHOULD I COMBINE ASSEMBLY AND C CODE?

This is a very application-dependent question. There are some device-specific opera-
tions that cannot be done in normal C code. Typically, the language tool will provide a
built-in function to provide this feature.

If you decide to combine assembly and C code, ensure that the code complies with the
run-time model, i.e., that arguments are transmitted in the correct registers; and that
registers are properly used and not overwritten.

3.4.7.6 WHAT IS THE DIFFERENCE BETWEEN .s AND .S FILES?

Both of these files should contain assembly language. .S files which are preprocessed
by the C compiler. This means that they might include C preprocessing statements
(#define, #ifdef, and etc.), but they should not contain C statements. For informa-
tion on these assembly files, see the following section of this user’s guide:

Section 5.5.1 “Output Files”

3.4.7.7 HOW DO I MAKE A FUNCTION WRAPPER FOR AN ASSEMBLY
MODULE?

The C compiler expects all C visible names to start with a leading underscore. In order
to export a function to C code from assembly code, it must be globally visible. Of
course, there should also be an external prototype in C so that the compiler can
properly see it.

 foo.s:

 .text
 .global _foo
 _foo: retlw #0,w0

 main.c:

 extern int foo(void);

For details on using C code with an assembly module, see the following section of this
user’s guide:

Section 16.2 “Mixing Assembly Language and C Variables and Functions”

3.4.7.8 WHEN SHOULD INLINE ASSEMBLY BE USED INSTEAD OF ASSEMBLY
MODULES?

If the programmer does decide to combine assembly code and C code; ensure that the
following occurs:

• Code complies with the run-time model

• Registers are properly used and not overwritten

• Code uses the GNU extended inline assembly code

Long sequences are often hard to debug, so ensure that you correctly follow the guide-
lines.
 2012-2018 Microchip Technology Inc. DS50002071G-page 63

MPLAB® XC16 C Compiler User’s Guide
3.5 GETTING MY APPLICATION TO DO WHAT I WANT

This section provides programming techniques, applications and examples. It also
examines questions that relate to making an application perform a specific task.

• How Do I Generate Debug Information?

• Why No Disassembly in the MPLAB X IDE Disassembly Window?

• How Do I Share Data Between Interrupt and Main-line Code?

• How to Protect My Code After It Is Programmed Into a Device?

• How Do I Redirect Standard I/O When Using Printf?

• How Do I Place Variables in Off-Chip Memory?

• How Can I Implement a Delay in My Code?

• How Can I Rotate a Variable?

3.5.1 How Do I Generate Debug Information?

For the compiler and assembler, the command-line option -g is used to generate
debugging information. For details, refer to the following document (available on the
Microchip website) and see the following section of this user’s guide:

“MPLAB® XC16 Assembler, Linker and Utilities User’s Guide” (DS50002106)

Section 5.7.5 “Options for Debugging”

3.5.2 Why No Disassembly in the MPLAB X IDE Disassembly
Window?

You must enable the generation of debug information before you can see anything in
the disassembly window. See the following section of this user’s guide:

Section 3.5.1 “How Do I Generate Debug Information?”

3.5.3 How Do I Share Data Between Interrupt and Main-line Code?

Variables accessed from both interrupt and main-line code can easily become cor-
rupted or misread by the program. The volatile qualifier tells the compiler to avoid
performing optimizations on such variables. This will fix some of the issues associated
with this problem.

Other issues arise because the way variables are accessed can vary from statement
to statement. Therefore it is usually best to avoid these issues entirely by disabling
interrupts prior to the variable being accessed in main-line code, then to re-enable the
interrupts afterwards. For more information on these solutions, see the following
sections of this user’s guide:

Section 8.9.2 “Volatile Type Qualifier”

Section 14.7 “Enabling/Disabling Interrupts”

3.5.4 How to Protect My Code After It Is Programmed Into a Device?

Many devices with flash program memory allow all or part of this memory to be write
protected. The device Configuration bits need to be set correctly for this to take place.
For more on using Configuration bits, see the following sections of this user’s guide:

Section 6.5 “Configuration Bit Access”

Section 2.5.14 “Specifying Configuration Bits” (CCI)

Your device data sheet is also a good resource for this question.
DS50002071G-page 64 2012-2018 Microchip Technology Inc.

How To’s
3.5.5 How Do I Redirect Standard I/O When Using Printf?

The printf function does two things: it formats text, based on the format string and
placeholders you specify; and it sends (prints) this formatted text to a destination (or
stream). You can choose the printf output go to an LCD, SPI module or USART, for
example. For more on the using ANSI C function printf, including how to customize
the output so that it goes to another peripheral, refer to the following document. It is
available for download from the Microchip Technology website, www.microchip.com.

 “16-Bit Language Tools Libraries Reference Manual” (DS50001456)

3.5.6 How Do I Place Variables in Off-Chip Memory?

To locate variables in off-chip memory, use the __external__ type qualifier. To locate
variables in off-chip memory across a Parallel Master Port (PMP), use the __pmp__
type qualifier.

The time required to access these variables is longer than for variables in the internal
data memory. For details on accessing off-chip memory, see the following sections of
this user’s guide:

Section 8.10.6 “__external__ Type Qualifier”

Section 8.10.5 “__pmp__ Type Qualifier”

3.5.7 How Can I Implement a Delay in My Code?

Using a device timer to generate a delay is the best method. If no time is available, then
you can use the library functions _delay32, __delay_ms, or __delay_us, as they
are described in the following document. It is available for download from the Microchip
Technology website, www.microchip.com.

“16-Bit Language Tools Libraries Reference Manual” (DS50001456)

3.5.8 How Can I Rotate a Variable?

The C language does not have a rotate operator, but rotations can be performed using
the shift and bitwise OR operators. For more information, see the following sections in
this user’s guide:

Section 2.4.10 “Bitwise Operations on Signed Values” (CCI)

Section 2.4.11 “Right-shifting Signed Values” (Signed variables)
 2012-2018 Microchip Technology Inc. DS50002071G-page 65

MPLAB® XC16 C Compiler User’s Guide
3.6 UNDERSTANDING THE COMPILATION PROCESS

This section tells you how to find out what the compiler did during the build process,
how it encoded output code, where it placed objects, etc. It also discusses the features
that are supported by the compiler.

• How Does Licensing Affect Features and Optimization Levels?

• Why Can’t I Debug my Code after I Optimize?

• How Can I Make My Code Smaller?

• How Can I Reduce RAM Usage?

• How Can I Make My Code Faster?

• What are the Speed vs. Size Tradeoffs?

• How Can I Control Where the Language Tool Places Objects in Memory?

• How Can I Make My Interrupt Routine Faster?

• How Big Can C Variables Be?

• Which Optimizations Will Be Applied to My Code?

• Which Devices are Supported by the Compiler?

• How Do I Know What Code the Compiler Is Producing?

• How Can I Tell How Big a Function Is?

• How Do I Learn Where Variables and Functions Have Been Positioned?

• How Do I Properly Reserve Memory?

• How Do I Know How Much Memory Is Still Available?

• Which Libraries Get Included by Default?

• How Do I Create My Own Libraries?

• Why Do I Get Out-of-memory Errors When I Select a Debugger?

• See also, How Do I Find Out What a Warning or Error Message Means?

• See also, How Do I Build Libraries?

• See also, What is Different About an MPLAB X IDE Debug Build?

• See also, How Do I Stop A Function From Being Removed?

3.6.1 How Does Licensing Affect Features and Optimization Levels?

Different licenses vary in the features and optimizations available. See the following
chapter of this user’s guide:

Chapter 18. “Optimizations”

3.6.2 Why Can’t I Debug my Code after I Optimize?

Debugging optimized code can be challenging, but not impossible. See the following
section of this user’s guide:

Section 18.4 “Using Optimizations”
DS50002071G-page 66 2012-2018 Microchip Technology Inc.

How To’s
3.6.3 How Can I Make My Code Smaller?

General advice for creating smaller code:

• Do not mix data types.

• Define index variables in the native word width.

• Don't use floating-point variables when integers will suffice. When using
floating-point variables, consider using the smaller math libraries.

• Compiler option -mpa can be combined with any optimization level to reduce
code size. See the following chapter in this user’s guide:

Chapter 18. “Optimizations”

• When initializing an SFR, use the full name of the SFR instead of bit names. You
can initialize several fields at once with this technique.

• Instead of copying code literally into several places in your program, reorganize
the shared code into functions.

• Use the small code, small scalar, and large data memory models. Refer to the
following section of this user’s guide:

Section 10.15 “Memory Models”

3.6.4 How Can I Reduce RAM Usage?

Try the following suggestions to reduce RAM usage:

1. Some of the same suggestions for making your code smaller can be useful to
reduce RAM usage, see the following section of this user’s guide:

Section 3.6.3 “How Can I Make My Code Smaller?”

2. Rather than pass large objects to (or from) functions, pass pointers that
reference these objects (to save stack resources).

3. Objects that do not need to change throughout the program can be located in
program memory using the -mconst-in-code option and the const qualifier.
This frees up precious RAM, but slows execution. Refer to the following section
of this user’s guide:

Section 10.4 “Variables in Program Space”

3.6.5 How Can I Make My Code Faster?

Try the following suggestions for faster code execution:

1. Smaller code can be faster code. Reducing the number of machine instructions
that are necessary to perform a task will result in faster execution of that task. For
details on making smaller and faster code, see the following sections of this
user’s guide:

Section 3.6.3 “How Can I Make My Code Smaller?”

Section 3.6.8 “How Can I Make My Interrupt Routine Faster?”

2. Depending on your compiler license, you may be able to use increasing optimi-
zation levels to generate faster code. For details, see the following chapter and
section of this user’s guide:

Chapter 18. “Optimizations”

Section 5.7.6 “Options for Controlling Optimization”

3. Algorithm choice has more impact on size and speed of your solution than any
other factor. Choose the right algorithm for the job.

Note: Optimized code may be more difficult to debug.
 2012-2018 Microchip Technology Inc. DS50002071G-page 67

MPLAB® XC16 C Compiler User’s Guide
3.6.6 What are the Speed vs. Size Tradeoffs?

Microchip's dsPIC architecture is primarily a 16-bit architecture. It is often less run-time
efficient to use 8-bit values as the compiler may have to extend the value to use it.
There are times when this will save data space, but not always. See the items below to
help you make your code faster, smaller, or both.

• Array index variables and pointer offsets should always be defined as an integer
sized type; size_t is often a good choice. A different sized integer type will
require the compiler to do a conversion at run-time.

• Automatic variables (function local variables) will often be allocated into a register
at compile time. A register is a minimum of 16 bits wide, so using a smaller type
can require the compiler to generate extra code. Therefore, unless 8-bit overflow
rules are required, use 16-bit types instead. Also, the stack has alignment restric-
tions, making stack accesses for smaller type objects possibly less efficient.

• Argument transmission (parameter passing) either happens in registers or on the
stack. Reduce the chance of generating conversions by avoiding the use of
smaller than 16-bit objects.

• Objects that are defined at File scope, or function static scope, will consume less
space if defined as 8-bit typed objects. Be aware that data sections are aligned to
16 bits, so using named sections, or one of the other attributes that might require
a new section, may not provide the data size savings that are desired.

• MPLAB XC16 is free to reorder objects in File scope or automatic scope, but it is
not allowed to re-order structure members. Unless a pre-defined interface is being
conformed to, try to allocate structure members to group similarly-sized objects
together, with bit-fields especially being grouped together. This will reduce the
number padding-bytes that may be inserted to maintain alignment requirements.

3.6.7 How Can I Control Where the Language Tool Places Objects in
Memory?

In most situations, you should allow the language tool to place objects in memory. If you
still want to place objects, consult the following section of this user’s guide for details:

Section 3.4.3 “Memory Allocation”

3.6.8 How Can I Make My Interrupt Routine Faster?

Try the following suggestions for faster ISR execution:

1. Smaller code is often faster code. For details, see the following section of this
user’s guide:

Section 3.6.3 “How Can I Make My Code Smaller?”

2. Suggestions to make code faster also work for ISR code. For details, refer to the
following section of this user’s guide:

Section 3.6.5 “How Can I Make My Code Faster?”

3. Consider having the ISR simply set a flag and return. The flag can then be
checked in main-line code to handle the interrupt. This has the advantage of
moving the complicated interrupt-processing code out of the ISR so that it no lon-
ger contributes to its register usage. Always use the volatile qualifier for vari-
ables shared by the interrupt and main-line code; see the following sections of
this user’s guide:

Section 8.9.2 “Volatile Type Qualifier”

Section 3.5.3 “How Do I Share Data Between Interrupt and Main-line Code?”
DS50002071G-page 68 2012-2018 Microchip Technology Inc.

How To’s
3.6.9 How Big Can C Variables Be?

This question specifically relates to the size of individual C objects, such as arrays or
structures. The total size of all variables is another matter.

To answer this question you need to know the memory space in which the variable is
to be located. When using the -mconst-in-code option, objects qualified const will
be located in program memory, other objects will be placed in data memory. Program
memory object sizes are discussed in the following section of this user’s guide:

Section 10.4.3 “Size Limitations of Program Memory Variables”

Objects in data memory are broadly grouped into “autos” and “non-autos.” These
objects have size limitations. For more on auto and non-auto variables and the size
limitations, see the following sections of this user’s guide:

Section 10.3 “Variables In Data Space Memory”

Section 10.3.3.3 “Auto Variable Size Limits”

Section 10.3.2.3 “Non-Auto Variable Size Limits”

3.6.10 Which Optimizations Will Be Applied to My Code?

Code optimizations available depend on your compiler license. For more information,
refer to the following chapter and section of this user’s guide:

Chapter 18. “Optimizations”

Section 5.7.6 “Options for Controlling Optimization”
 2012-2018 Microchip Technology Inc. DS50002071G-page 69

MPLAB® XC16 C Compiler User’s Guide
3.6.11 Which Devices are Supported by the Compiler?

Support for new devices usually occurs with each compiler release. To learn whether a
device is supported by your compiler, see the following section in this user’s guide:

Section 6.2 “Device Support”

3.6.12 How Do I Know What Code the Compiler Is Producing?

The assembly list file can be set up (using assembler listing file options) to contain a
variety of information about the code.That information could include assembly output
for almost the entire program, library routines linked in to your program, section
information, symbol listings, and more.

The list file can be produced as follows:

• On the command line, create a basic list file using the option:
-Wa, -a=projectname.lst

• For MPLAB X IDE, right click on your project and select “Properties.” In the Proj-
ect Properties window, click on “xc16-as” under “Categories.” From “Option
categories,” select “Listing file options” and ensure “List to file” is checked.

By default, the assembly list file will have a .lst extension.

For information on the list file, refer to the following document. It is available for
download from the Microchip Technology website, www.microchip.com.

“MPLAB® XC16 Assembler, Linker and Utilities User’s Guide” (DS50002106).

3.6.13 How Can I Tell How Big a Function Is?

This size of a function (the amount of assembly code generated for that function) can
be determined from the assembly list file. See the following section of this user’s guide:

Section 3.6.12 “How Do I Know What Code the Compiler Is Producing?”

3.6.14 How Do I Learn Where Variables and Functions Have Been
Positioned?

The xc16-objdump utility displays information about one or more object files. Use the
-t option to print the symbol table entries of a file.

Also, you can determine where variables and functions have been positioned from the
map file generated by the linker. Only global symbols are shown in the map file.

There is a mapping between C identifiers and the symbols used in assembly code. The
symbol associated with a variable is assigned the address of the lowest byte of the vari-
able; for functions it is the address of the first instruction generated for that function. For
more on xc16-objdump and linker map files, refer to the following document. It is
available for download from the Microchip Technology website, www.microchip.com.

“MPLAB® XC16 Assembler, Linker and Utilities User’s Guide” (DS50002106)

3.6.15 How Do I Properly Reserve Memory?

Memory may be reserved by creating a specific section in the linker script or by using
attributes to block out sections of memory. If you have not used one of these methods
to reserve memory, you may not be reserving the memory you thought you were, and
the linker may be placing objects in this area. For more on reserving memory, consult
the following document. It is available for download from the Microchip Technology
website, www.microchip.com. Also see the following section of this user’s guide.

“MPLAB® XC16 Assembler, Linker and Utilities User’s Guide” (DS50002106)

Section 3.4.3.4 “How Do I Stop the Compiler from Using Certain Memory Loca-
tions?”
DS50002071G-page 70 2012-2018 Microchip Technology Inc.

How To’s
3.6.16 How Do I Know How Much Memory Is Still Available?

A memory usage summary is available from the compiler after compilation
(--report-mem option) or from MPLAB X IDE in the Dashboard window. All of these
summaries indicate the amount of memory used and the amount still available, but
none indicate whether this memory is one contiguous block or broken into many small
chunks. Since small blocks of free memory cannot be used for larger objects,
out-of-memory errors may be produced even though the total amount of memory free
is apparently sufficient for the objects to be positioned.

Consult the linker map file to determine exactly which memory is still available in each
linker class. This file also indicates the largest contiguous block in that class, if there
are memory page divisions. See the following document for information on the map file.
It is available for download from the Microchip website, www.microchip.com.

“MPLAB® XC16 Assembler, Linker and Utilities User’s Guide” (DS50002106)

3.6.17 Which Libraries Get Included by Default?

The compiler automatically includes any applicable standard library into the build pro-
cess when you compile. So, you never need to control these files. However, there are
some libraries you must remember to include, such as any libraries that do not come
with the compiler. One can tell which standard libraries have been used in the resulting
compiled image by inspecting the MAP file. Archive members included from the stan-
dard library will be in a listing that is associated with the symbol that prompted the inclu-
sion of a particular standard library archive within the MAP. For details on standard
libraries, consult the following document. It is available for download from the Microchip
Technology website, www.microchip.com.

“16-Bit Language Tools Libraries Reference Manual” (DS50001456)

3.6.18 How Do I Create My Own Libraries?

To use one or more library files that were built by yourself or a colleague, include them
in the list of files being compiled on the command line. The library files can be specified
in any position in the file list, relative to the source files. However, if there is more than
one library file, they will be searched in the order specified in the command line.

An example of specifying the library liblibrary.a on the command line is:

xc16-gcc -mcpu=33FJ256GP710 -T p33FJ256GP710.gld main.c int.c
liblibrary.a

If you want to use the -l option, then:

xc16-gcc -mcpu=33FJ256GP710 -T p33FJ256GP710.gld main.c int.c
-llibrary

If you are using MPLAB X IDE to build a project, add the library file(s) to the Libraries
folder that is in your project, and in the order in which they should be searched. The
IDE will ensure that they are passed to the compiler at the appropriate point in the build
sequence. For information on how you build your own library files, see the following
section in this user’s guide:

Section 5.4.1.2 “User-Defined Libraries”

3.6.19 Why Do I Get Out-of-memory Errors When I Select a Debugger?

If you use a hardware-tool debugger - such as PICkit 3 in-circuit debugger, MPLAB ICD
3 in-circuit debugger, or MPLAB REAL ICE in-circuit emulator, RAM is required for
debugging. See the following section in this user’s guide:

Section 3.5.2 “Why No Disassembly in the MPLAB X IDE Disassembly
Window?”
 2012-2018 Microchip Technology Inc. DS50002071G-page 71

MPLAB® XC16 C Compiler User’s Guide
3.7 FIXING CODE THAT DOES NOT WORK

This section examines issues relating to projects that do not build due to compiler
errors; or projects that do build but do not work as expected.

• How Do I Find Out What a Warning or Error Message Means?

• How Do I Find the Code that Caused Compiler Errors Or Warnings in My
Program?

• How Can I Stop Warnings from Being Produced?

• How Do I Know If the Stack Has Overflowed?

• What Can Cause Corrupted Variables and Code Failure When Using Interrupts?

• See also, Invoking the Compiler

• See also, How Do I Properly Reserve Memory?

3.7.1 How Do I Find Out What a Warning or Error Message Means?

Most warning and error messages are self-explanatory; however, some require an
additional discussion. All MPLAB XC16 warning and error messages are discussed in
the appendix referenced below. Additionally, a discussion of how to control message
output is included in the following section of this user’s guide:

Appendix C. “Diagnostics”

Section 5.7.4 “Options for Controlling Warnings and Errors”

3.7.2 How Do I Find the Code that Caused Compiler Errors Or
Warnings in My Program?

In most instances the message produced by the compiler indicates the offending line
of code where the syntax error is relating to the source code. If you are compiling in
MPLAB X IDE, you can double click the message and have the editor take you to the
offending line. But identifying the offending code is not always so easy.

In some instances, the error is reported on the line of code following the line that needs
attention. This is because a C statement is allowed to extend over multiple lines of the
source file. It is possible that the compiler may not be able to determine that there is an
error until it has started to scan the next statement. Consider the following code:

input = PORTB // oops - forgot the semicolon
if(input>6)
 // ...

The missing semicolon on the assignment statement has been flagged on the following
line that contains the if() statement.

In other cases, the error might come from the assembler, not the compiler. If the source
being compiled is an assembly module, the error directly indicates the line of assembly
code that triggered the error.

There are errors that do not relate to any particular line of code at all. An error in a com-
piler option or a linker error are examples of these.

If you need to see the assembly code generated by the compiler, look in the assembly
list file. For information on where the linker attempted to position objects, see the map
file. Consult the following document for information on the list and map files. It is
available for download from the Microchip Technology website, www.microchip.com.

“MPLAB® XC16 Assembler, Linker and Utilities User’s Guide” (DS50002106)
DS50002071G-page 72 2012-2018 Microchip Technology Inc.

How To’s
3.7.3 How Can I Stop Warnings from Being Produced?

In general, you should not ignore warnings. Warnings indicate situations that could pos-
sibly lead to code failure. Always check your code to confirm that it is not a possible
source of error.

However, if you feel that you want to inhibit warning messages, do the following:

• Inhibit specific warnings by using the -Wno- version of the option.

• Inhibit all warnings with the -w option.

• In MPLAB X IDE, inhibit warnings in the Project Properties window under each
tool category. Also look in the Tool Options window, Embedded button,
Suppressible Messages tab.

For details, see the following section in this user’s guide:

Section 5.7.4 “Options for Controlling Warnings and Errors”

3.7.4 How Do I Know If the Stack Has Overflowed?

The 16-bit devices use a stack thats upper address boundary can be set in the SPLIM
register. Therefore, it is possible to set a stack level to prevent overflow.

Other stack errors, besides overflow, may be trapped and identified in code. For more
information about using the software stack, see the following sections of this guide:

Section 10.3.3.1 “Software Stack”

Section 10.3.3.2 “The C Stack Usage”

Section on the software stack in your device data sheet

3.7.5 What Can Cause Corrupted Variables and Code Failure When
Using Interrupts?

This is usually caused by having variables used in both interrupt and main-line code. If
the compiler optimizes access to a variable, or access is interrupted by an interrupt
routine, then corruption can occur. See the following section of this user’s guide:

Section 3.5.3 “How Do I Share Data Between Interrupt and Main-line Code?”
 2012-2018 Microchip Technology Inc. DS50002071G-page 73

MPLAB® XC16 C Compiler User’s Guide
NOTES:
DS50002071G-page 74 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 4. XC16 Toolchain and MPLAB X IDE
4.1 INTRODUCTION

The 16-bit language tools may be used together under MPLAB X IDE to provide GUI
development of application code for the dsPIC® DSC and PIC24 MCU families of
devices. The tools are:

• MPLAB XC16 C Compiler

• MPLAB XC16 Assembler

• MPLAB XC16 Object Linker

• MPLAB XC16 Object Archiver/Librarian and other 16-bit utilities

Topics covered in this chapter:

• MPLAB X IDE and Tools Installation

• MPLAB X IDE Setup

• MPLAB X IDE Projects

• Project Setup

• Project Example

4.2 MPLAB X IDE AND TOOLS INSTALLATION

In order to use the 16-bit language tools with MPLAB X IDE, you must install:

• MPLAB X IDE, which is available for free on the Microchip website.

• MPLAB XC16 C Compiler, which includes all of the 16-bit language tools. The
compiler is available for free (Free and Evaluation license levels) or for purchase
(PRO license level) on the Microchip website.

The 16-bit language tools will be installed, by default, in the directory:

• Windows OS 32-bit - C:\Program Files\Microchip\xc16\x.xx
• Windows OS 64-bit - C:\Program Files (x86)\Microchip\xc16\x.xx
• Mac OS - Applications/microchip/xc16/x.xx
• Linux OS - /opt/microchip/xc16/x.xx

where x.xx is the version number.

The executables for each tool will be in the bin subdirectory:

• C Compiler - xc16-gcc.exe

• Assembler - xc16-as.exe

• Object Linker - xc16-ld.exe

• Object Archiver/Librarian - xc16-ar.exe

• Other Utilities - xc16-utility.exe

Device support files may be found under the support subdirectory. The generic xc.h
C header file and xc.inc generic assembler include file may be found under the
support/generic subdirectory.
 2012-2018 Microchip Technology Inc. DS50002071G-page 75

XC16 Toolchain and MPLAB X IDE
4.3 MPLAB X IDE SETUP

Once MPLAB X IDE is installed on your PC, launch the application and check the
settings below to ensure that the 16-bit language tools are properly recognized.

1. From the MPLAB X IDE menu bar, select Tools>Options to open the Options dia-
log. Click on the Embedded button and select the “Build Tools” tab.

2. Click on “XC16” under “Tool Collection.” Ensure that the paths are correct for
your installation.

3. Click the OK button.

FIGURE 4-1: XC16 SUITE TOOL LOCATIONS IN WINDOWS OS
 2012-2018 Microchip Technology Inc. DS50002071G-page 76

MPLAB® XC16 C Compiler User’s Guide
4.4 MPLAB X IDE PROJECTS

A project in MPLAB X IDE is a group of files needed to build an application, along with
their associations to various build tools. Below is a generic MPLAB X IDE project.

FIGURE 4-2: COMPILER PROJECT RELATIONSHIPS

Object File Libraries
(*.a)

Assembler

Linker

C Source Files
(*.c)

C CompilerAssembly Source
Files (*.S)

Debug File
(*.cof,*.elf)

Archiver (Librarian)

Compiler
Driver
Program

MPLAB® X IDE
Debug Tool

Source Files (*.s)

Object Files
(*.o)

Command-Line
Simulator

Linker Script File (1)
(*.gld)

(1) The linker can choose the correct
linker script file for your project.

Executable File
(*.hex)

MPLAB® X IDE
Programmer

bin2hex Utility
DS50002071G-page 77 2012-2018 Microchip Technology Inc.

XC16 Toolchain and MPLAB X IDE
4.4.1 Operation Summary

In this MPLAB X IDE project, C source files are shown as input to the compiler. The
compiler will generate source files for input into the assembler.

Assembly source files are shown as input to the C preprocessor. The resulting source
files are input to the assembler. The assembler will generate object files for input into
the linker or archiver.

Object files can be archived into a library using the archiver/librarian.

The object files and any library files, as well as a linker script file (generic linker scripts
are added automatically), are used to generate the project output files via the linker.
The output file generated by the linker is either an ELF or COF file used by the simulator
and debug tools. This file may be input into the bin2hex utility to produce an executable
file (.hex).

4.4.2 References

For more information on compiler operation see:

• Chapter 5. “Compiler Command-Line Driver.”

• MPLAB® X IDE User’s Guide (DS50002027),
“Basic Tasks,” ”Create a New Project.”

• MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106).
 2012-2018 Microchip Technology Inc. DS50002071G-page 78

MPLAB® XC16 C Compiler User’s Guide
4.5 PROJECT SETUP

To set up an MPLAB X IDE project for the first time, use the built-in Project Wizard
(File>New Project). In this wizard, you will be able to select a language toolsuite that
uses the 16-bit language tools. For more on the wizard and MPLAB X IDE projects, see
MPLAB X IDE documentation.

Once you have a project set up, you may then set up properties of the tools in MPLAB
X IDE (Figure 4-3).

1. From the MPLAB X IDE menu bar, select File>Project Properties to open a
window to set/check project build options.

2. Under “Conf:[default],” select a tool from the tool collection to set up.

- XC16 (Global Options)

- xc16-as (16-Bit Assembler)

- xc16-gcc (16-Bit C Compiler)

- xc16-ld (16-Bit Linker)

- xc16-ar (16-Bit Archiver/Librarian)

FIGURE 4-3: PROJECT PROPERTIES WINDOW
DS50002071G-page 79 2012-2018 Microchip Technology Inc.

XC16 Toolchain and MPLAB X IDE
4.5.1 XC16 (Global Options)

Set up global options for all 16-bit language tools. See also “Options Page Features.”

TABLE 4-1: ALL OPTIONS CATEGORY

Option Description Command Line

Output file format Select either ELF/DWARF or COFF. -omf=elf
-omf=cof

Define common macros Add macros common to compiler, assembler and linker. -Dmacro

Generic build Build for a generic core device (no peripherals).

Use legacy libc Check to use libraries in the format before v3.25.
Uncheck to use the new (HI-TECH) libraries format.

-legacy-libc

Fast floating point math Check to use faster single and double floating point libraries, which
consume more RAM.
Uncheck to use original libraries which are slower but create
smaller code.

-fast-math

Relaxed floating point
math

Check to use relaxed-compliance math library. This is a math
library that follows slightly different rules than those the IEEE
standard dictates for infinities, NaNs, and denormal (tiny) numbers.
Uncheck to use standard floating point math library.

-relaxed-math

Don’t delete intermediate
files

Check to not delete intermediate files. Place them in the object
directory and name them based on the source file.
Uncheck to remove intermediate files after a build.

-save-temps=obj

Common include dirs Directory paths entered here will be appended to the already
existing include paths of the compiler.
Relative paths are from the MPLAB X IDE project directory.

-Idir
 2012-2018 Microchip Technology Inc. DS50002071G-page 80

MPLAB® XC16 C Compiler User’s Guide
4.5.2 xc16-as (16-Bit Assembler)

A subset of command-line options may be specified in MPLAB X IDE. Select a category and then set up
assembler options. For additional options, see the MPLAB® XC16 Assembler, Linker and Utilities User’s
Guide (DS50002106). See also, “Options Page Features.”

TABLE 4-2: GENERAL OPTIONS CATEGORY

Option Description Command Line

Define ASM macros (.S
only)

Add assembler macros. -Dmacro

Assembler symbols Define symbol 'sym' to a given 'value'. --defsym sym=value

ASM include dirs Add a directory to the list of directories the assembler
searches for files specified in .include directives.
For more information, see Section 4.5.7 “Additional Search
Paths and Directories.”

-I"dir"

Preprocessor include dirs Add a directory to the list of directories the compiler prepro-
cessor searches for files specified in .include directives.
For more information, see Section 4.5.7 “Additional Search
Paths and Directories.”

-I"dir"

Allow call optimization Check to turn relaxation on.
Uncheck to turn relaxation off.

--relax
--no-relax

Keep local symbols Check to keep local symbols, i.e., labels beginning with .L
(upper case only).
Uncheck to discard local symbols.

--keep-locals (-L)

Diagnostics level Select warnings to display in the Output window.

- Generate warnings --warn

- Suppress warnings --no-warn

- Fatal warnings --fatal-warnings

Additional driver options Enter any additional driver options not existing in the GUI. The
string you introduce here will be emitted as-is in the driver
invocation command.

TABLE 4-3: LISTING FILE OPTIONS CATEGORY

Option Description Command Line

Include source code Check for a high-level language listing. High-level listings
require that the assembly source code is generated by a
compiler, a debugging option like -g is given to the com-
piler, and assembly listings (-al) are requested.
Uncheck for a regular listing.

-ah

Include macros expan-
sions

Check to expand macros in a listing.
Uncheck to collapse macros.

-am

Omit false conditionals Check to omit false conditionals (.if, .ifdef) in a list-
ing.
Uncheck to include false conditionals.

-ac

Omit forms processing Check to turn off all forms processing that would be
performed by the listing directives .psize,
.eject, .title and .sbttl.
Uncheck to process by listing directives.

-an

Include assembly Check for an assembly listing. This -a suboption
may be used with other suboptions.
Uncheck to exclude an assembly listing.

-al
DS50002071G-page 81 2012-2018 Microchip Technology Inc.

XC16 Toolchain and MPLAB X IDE
Include symbols Check for a symbol table listing.
Uncheck to exclude the symbol table from the listing.

-as

Omit debugging
directives

Check to omit debugging directives from a listing. This
can make the listing cleaner.
Uncheck to included debugging directives.

-ad

Include section informa-
tion

Check to display information on each of the code and
data sections. This information contains details on the
size of each of the sections and then a total usage of pro-
gram and data memory.
Uncheck to not display this information.

-ai

List to file Check to send listing information to a file.
Uncheck to send listing information to the Output window.

-a=asmfilename.lst

TABLE 4-3: LISTING FILE OPTIONS CATEGORY (CONTINUED)

Option Description Command Line
 2012-2018 Microchip Technology Inc. DS50002071G-page 82

MPLAB® XC16 C Compiler User’s Guide
4.5.3 xc16-gcc (16-Bit C Compiler)

Although the MPLAB XC16 C Compiler works with MPLAB X IDE, it must be acquired separately. The full
version may be purchased, or a student (limited-feature) version may be downloaded for free. See the
Microchip website (www.microchip.com) for details.

A subset of command-line options may be specified in MPLAB X IDE. Select a category and then set up
compiler options. For additional options, see Section 5.7 “Driver Option Descriptions.”

See also “Options Page Features.”

TABLE 4-4: GENERAL CATEGORY

Option Description Command Line

Generate debugging info Create a COFF or ELF file with information to allow
debugging of code in MPLAB X IDE.
Note: COFF supports debugging in the .text section
only.

-g

Isolate each function in a section Check to place each function into its own section in
the output file. The name of the function determines
the section’s name in the output file.
Note: When you specify this option, the assembler
and linker may create larger object and executable
files and will also be slower.
Uncheck to place multiple functions in a section.

-ffunction-sections

Place data into its own section Place each data item into its own section in the output
file.
The name of the data item determines the name of the
section. When you specify this option, the assembler
and linker may create larger object and executable
files and will also be slower.

-fdata-sections

Use 64-bit double Use long double instead of double type equiva-
lent to float. Mixing this option across modules can
have unexpected results if modules share double data
either directly through argument passage or indirectly
through shared buffer space.

-fno-short-double

Fill upper value for data in flash Fill upper flash memory with the value specified. -mfillupper=value

Name the text section Place text (program code) in a section named name
rather than the default .text section.

-mtext=name
DS50002071G-page 83 2012-2018 Microchip Technology Inc.

http://www.microchip.com

XC16 Toolchain and MPLAB X IDE
TABLE 4-5: MEMORY MODEL CATEGORY

Option Description Command Line

Code model Select a code (program memory/ROM) model.

- default -msmall-code

- large (>32 K words) -mlarge-code

- small (32 K words) -msmall-code

Data model Select a data (data memory/RAM) model.

- default device dependant2

- large (device dependent1) -mlarge-data

- small (device dependent1) -msmall-data

Scalar model Select a scalar model.

- default -msmall-scalar

- large (device dependent1) -mlarge-scalar

- small (device dependent1) -msmall-scalar

Location of constant model Select a memory location for constants.

- default -mconst-in-code

- Data -mconst-in-data

- Code -mconst-in-code

Place all code in auxiliary flash Place all code from the current translation unit into
auxiliary Flash. This option is only available on
devices that have auxiliary Flash.

-mauxflash

Put constants into auxiliary flash When combined with -mconst-in-code, put
constants into auxiliary Flash.

-mconst-in-auxflash

Allow arrays larger than 32K Allow arrays that are larger than 32K, regardless of
memory model.

-menable-large-arrays

Aggregate data model Use aggregate data model. -mlarge-aggregate

Note 1: For most devices 6K of RAM is the near data space, but for some devices it is 4K of RAM.

2: For devices that have all of their data memory in the near space, the memory model is "small data" "small
scalar" so that all memory will be allocated in the near space.
For all other devices the default memory model is "large data" "small scalar". This will have the effect of
allowing the tool chain to place aggregate objects, such as arrays and structure, into the far memory
space. This can be over-ridden by explicitly selecting "small data" in the compiler options.
 2012-2018 Microchip Technology Inc. DS50002071G-page 84

MPLAB® XC16 C Compiler User’s Guide
TABLE 4-6: OPTIMIZATIONS CATEGORY

Option Description Command Line

Optimization Level Select an optimization level. Equivalent to -On where n is an
option. See Section 5.7.6 “Options for Controlling
Optimization.”
Your compiler license may support only some optimizations.
See Chapter 18. “Optimizations.”

-On

Unroll loops Check to perform the optimization of loop unrolling. This is only
done for loops whose number of iterations can be determined
at compile time or run time.
Uncheck to not unroll loops.

-funroll-loops

Omit frame pointer Check to not keep the Frame Pointer in a register for functions
that don’t need one.
Uncheck to keep the Frame Pointer.

-fomit-frame-pointer

Unlimited procedural
abstraction

Enable the procedure abstraction optimization. There is no
limit on the nesting level.

-mpa

Procedural abstraction Enable the procedure abstraction optimization up to level n.
Equivalent to -mpa=n option, where n equals:
• 0 - Optimization is disabled.
• 1 - The first level of abstraction is allowed; that is, instruc-

tion sequences in the source code may be abstracted into
a subroutine.

• 2 or greater - A second level of abstraction is allowed; that
is, instructions that were put into a subroutine in the first
level may be abstracted into a subroutine one level
deeper. This pattern continues for larger values of n. The
net effect is to limit the subroutine call nesting depth to a
maximum of n.

-mpa=n

Align arrays Set the minimum alignment for array variables to be the largest
power of two less than or equal to their total storage size, or
the biggest alignment used on the machine, whichever is
smaller.

-falign-arrays
DS50002071G-page 85 2012-2018 Microchip Technology Inc.

XC16 Toolchain and MPLAB X IDE
TABLE 4-7: PREPROCESSING AND MESSAGES CATEGORY

Option Description Command Line

Include C dirs Add the directory dir to the head of the list of directories to be
searched for header files.
For more information, see Section 4.5.7 “Additional Search
Paths and Directories.”

-I"dir"

Define C macros Define macro macro with the string 1 as its definition. -Dmacro

ANSI-std C support Check to support all (and only) ASCI C programs.
Uncheck to support ASCI and non-ASCI programs.

-ansi

Use CCI syntax Check if your code is written per the Common C Interface (CCI)
syntax (see Chapter 2. “Common C Interface.”).
Uncheck if you are not.

-mcci

Use IAR syntax Check if your code is written per the Embedded Compiler Com-
patibility Mode syntax for IAR (see Appendix B. “Embedded
Compiler Compatibility Mode”).
Uncheck if you are not.

-mext=IAR

Errata This option enables specific errata work-arounds identified by
ID.
Valid values for ID change from time to time and may not be
required for a particular variant. The ID all will enable all cur-
rently supported errata work-arounds. The ID list will display
the currently supported errata identifiers along with a brief
description of the errata.

-merrata=id

Smart IO forwarding level This option attempts to statically analyze format strings passed
to printf, scanf and the ‘f’ and ‘v’ variations of these functions.
Uses of nonfloating point format arguments will be converted to
use an integer-only variation of the library functions.
Equivalent to -msmart-io=n option where n equals:
• 0 - disables this option.
• 1 - only convert the literal values it can prove.
• 2 - causes the compiler to be optimistic and convert func-

tion calls with variable or unknown format arguments.

-msmart-io=n

Smart IO format strings Specifies what the format arguments are when the compiler is
unable to determine them.

Make warnings into
errors

Check to halt compilation based on warnings as well as errors.
Uncheck to halt compilation based on errors only.

-Werror

Additional warnings Check to enable all warnings.
Uncheck to disable warnings.

-Wall

Strict ANSI warnings Check to issue all warnings demanded by strict ANSI C.
Uncheck to issue all warnings.

-pedantic

Disable ISR warn Disable warning for inappropriate use of ISR function names.
By default the compiler will produce a warning if the
interrupt is not attached to a recognized interrupt vector
name. This option will disable that feature.

-mno-isr-warn

Enable SFR warnings Enable warnings related to SFRs. -msfr-warn=on|off
 2012-2018 Microchip Technology Inc. DS50002071G-page 86

MPLAB® XC16 C Compiler User’s Guide
4.5.4 xc16-ld (16-Bit Linker)

A subset of command-line options may be specified in MPLAB X IDE. Select a category, and then set up
linker options. For additional options, see the MPLAB® XC16 Assembler, Linker and Utilities User’s Guide
(DS50002106). See also “Options Page Features.”

TABLE 4-8: GENERAL CATEGORY

Option Description Command Line

Heap size Specify the size of the heap in bytes. Allocate a run-time heap of
size bytes for use by C programs. The heap is allocated from
unused data memory. If not enough memory is available, an error
is reported.

--heap size

Min stack size Specify the minimum size of the stack in bytes. By default, the
linker allocates all unused data memory for the run-time stack.
Alternatively, the programmer may allocate the stack by declaring
two global symbols: __SP_init and __SPLIM_init. Use this
option to ensure that at least a minimum sized stack is available.
The actual stack size is reported in the link map output file. If the
minimum size is not available, an error is reported.

--stack size

Use local stack Check to prevent allocating the stack in extended data space
memory.
Uncheck to allow allocating the stack in extended data space
memory.

--local-stack
--no-local-stack

Allow overlapped
sections

Check to not check section addresses for overlaps.
Uncheck to check for overlaps.

--check-sections
--no-check-sections

Init data sections Check to support initialized data.
Uncheck to not support.

--data-init
--no-data-init

Pack data template Check to pack initial data values.
Uncheck to not pack.

--pack-data
--no-pack-data

Create handles Check to support far code pointers.
Uncheck to not support.

--handles
--no-handles

Create default ISR Check to create an interrupt function for unused vectors.
Uncheck to not create a default ISR.

--isr
--no-isr

Remove unused
sections

Check to not enable garbage collection of unused input sections
(on some targets).
Uncheck to enable garbage collection.

--no-gc-sections
--gc-sections

Fill value for upper
byte of data

Enter a fill value for upper byte of data. Use this value as the
upper byte (bits 16-23) when encoding data into program memory.
This option affects the encoding of sections created with the psv
or eedata attribute, as well as the data initialization template if
the --no-pack-data option is enabled.

--fill-upper=value

Stack guardband size Enter a stack guardband size to ensure that enough stack space
is available to process a stack overflow exception.

--stackguard=size

Additional driver
options

Type any additional driver options not existing in this GUI other-
wise. The string you introduce here will be emitted as is in the
driver invocation command.

Use response file to
link

Check to create a makefile that uses a response file for the link
step. In Windows, you have a maximum command line length of
8191 chars. When linking long programs, the link line might go
over this limit. MPLAB XC16 provides a response file
work-around. See MPLAB X IDE documentation, Troubleshooting
section, for details.
Uncheck to not use a response file.
DS50002071G-page 87 2012-2018 Microchip Technology Inc.

XC16 Toolchain and MPLAB X IDE

TABLE 4-9: SYMBOLS AND MACROS CATEGORY

Option Description Command Line

Linker symbols Create a global symbol in the output file containing the absolute
address (expr). You may use this option as many times as neces-
sary to define multiple symbols in the command line. A limited form
of arithmetic is supported for the expr in this context: you may
give a hexadecimal constant or the name of an existing symbol, or
use + and - to add or subtract hexadecimal constants or symbols.

--defsym=sym

Define Linker macros Add linker macros. -Dmacro

Symbols Specify symbol information in the output.

- Keep all —

- Strip debugging info --strip-debug (-S)

- Strip all symbol info --strip-all (-s)

TABLE 4-10: FILL FLASH MEMORY CATEGORY

Option Description Command Line

Which areas to fill Specify which area of Flash memory to fill.
No Fill - None (default).
Fill All Unused - Fill all unused memory.
Provide Range to fill - Fill a range of memory. Enter a range under
“Memory Address Range”.

How to fill it Specify how to fill Flash memory.
Provide sequence of values - Provide a sequence under the
Sequence option.
Constant or incrementing value - Provide either:
• Constant = a value,

Increment/Decrement = No Incrementing
• Constant = a value,

Increment/Decrement = Increment Const OR
Decrement Const,
Increment/Decrement Constant = a value

Sequence When Provide sequence of values is selected, enter a sequence.
The form is n1, n2, where n1 uses C syntax. Example: 0x10, 25,
0x3F, 16.

--fill=sequence

Constant When Constant or incrementing value is selected, enter a con-
stant. Specify the constant using C syntax (e.g., 0x for hex, 0 for
octal).
Example: 0x10 is the same as 020 or 16.

--fill=constant

Increment/Decrement When Constant or incrementing value is selected, you may
select to increment or decrement the initial value of “Constant” on
each consecutive address.
No Incrementing - Do not change constant value.
Increment Const - Increment the constant value by the amount
specified under the option “Increment/Decrement Constant.”
Decrement Const - Decrement the constant value by the amount
specified under the option “Increment/Decrement Constant.”

Increment/Decrement
Constant

When Increment Const or Decrement Const is selected, enter a
constant increment or decrement value. Specify the constant using
C syntax (e.g., 0x for hex, 0 for octal). Example: 0x10 is the same
as 020 or 16.

--fill=con-
stant+=incr
--fill=con-
stant-=decr

Memory Address
Range

When Provide Range to fill is selected, enter the range here.
Specify range as Start:End where Start and End use C syntax.
Example 0x100:0x1FF is the same as 256:511.

--fill=value@range
 2012-2018 Microchip Technology Inc. DS50002071G-page 88

MPLAB® XC16 C Compiler User’s Guide
TABLE 4-11: LIBRARIES CATEGORY

Option Description Command Line

Libraries Add libraries to be linked with the project files. You may
add more than one.

--library=name

Library directory Add a library directory to the library search path. You may
add more than one.

--library-path="name"

Force linking of objects
that might not be compati-
ble

Check to force linking of objects that might not be com-
patible. The linker will compare the project device to infor-
mation contained in the objects combined during the link.
If a possible conflict is detected, an error (in the case of a
possible instruction set incompatibility) or a warning (in
the case of possible register incompatibility) will be
reported. Specify this option to override such errors or
warnings.
Uncheck to not force linking.

--force-link
--no-force-link

Don’t merge I/O library
functions

Check to not merge I/O library functions. Do not attempt
to conserve memory by merging I/O library function calls.
In some instances the use of this option will increase
memory usage.
Uncheck to merge I/O library functions to conserve mem-
ory.

--no-smart-io
--smart-io

Exclude standard libraries Check to not use the standard system startup files or
libraries when linking. Only use library directories speci-
fied on the command line.
Uncheck to use the standard system startup files and
libraries.

--nostdlib

TABLE 4-12: DIAGNOSTICS CATEGORY

Option Description Command Line

Generate map file Create a map file. -Map="file"

Display memory usage Check to print memory usage report.
Uncheck to not print a report.

--report-mem

Generate
cross-reference file

Check to create a cross-reference table.
Uncheck to not create this table.

--cref

Warn on section
realignment

Check to warn if start of section changes due to
alignment.
Uncheck to not warn.

--warn-section-align

Trace Symbols Add/remove trace symbols. --trace-symbol=symbol
DS50002071G-page 89 2012-2018 Microchip Technology Inc.

XC16 Toolchain and MPLAB X IDE
TABLE 4-13: CODE GUARD CATEGORY

Option Description Command Line

Boot RAM Specify the boot RAM segment: none, small,
medium or large.

--boot=option_ram

Boot Flash Specify the boot Flash segment: none, small,
medium, or large standard or none, small,
medium, or large high.

--boot=option_flash_std
--boot=option_flash_high

Boot EEPROM Specify the boot EEPROM segment. --boot=eeprom

Boot write-protect Specify the boot write protected segment. --boot=write_protect

Secure RAM Specify the secure RAM segment: none, small,
medium or large.

--secure=option_ram

Secure Flash Specify the secure Flash segment: none, small,
medium, or large standard or none, small,
medium, or large high.

--secure=option_flash_std
--secure=option_flash_high

Secure EEPROM Specify the secure EEPROM segment. --secure=eeprom

Secure write-protect Specify the secure write protected segment. --secure=write_protect

General write-protect Specify the general write protected segment. --general=write_protect

General code-protect Specify the secure code protected segment:
standard or high.

--general=code_protect_std
--general=code_protect_high

For more information on CodeGuard™ options, see “Options that Specify CodeGuard Security Features” in the
MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106).
Note: Not all development tools support CodeGuard programming. See tool documentation for more information.
 2012-2018 Microchip Technology Inc. DS50002071G-page 90

MPLAB® XC16 C Compiler User’s Guide
4.5.5 xc16-ar (16-Bit Archiver/Librarian)

A subset of command-line options may be specified in MPLAB X IDE. Select a
category, and then set up linker options. For additional options, see the MPLAB® XC16
Assembler, Linker and Utilities User’s Guide (DS50002106). See also, “Options Page
Features.”

4.5.6 Options Page Features

The Options section of the Properties page has the following features for all tools:

4.5.7 Additional Search Paths and Directories

For the compiler, assembler and linker, you may set additional paths to directories to
be searched for include files and libraries.

You may add as many directories as necessary to include a variety of paths. The cur-
rent working directory is always searched first and then the additional directories in the
order in which they were specified.

All paths specified should be relative to the project directory, which is the directory con-
taining the nbproject directory.

TABLE 4-14: GENERAL CATEGORY

Option Description
Command

Line

Break line into multiple lines For Windows OS, you have a maximum command
line length of 8191 chars. When archiving long sets
of files into libraries, the link line might go over this
limit. The compiler can break up the archive line
into smaller lines to avoid this limitation.

true

TABLE 4-15: PAGE FEATURES OPTIONS
Reset Reset the page to default values.

Additional options Enter options in a command-line (non-GUI) format.

Option Description Click on an option name to see information on the option in this
window. Not all options have information in this window.

Generated Command
Line

Click on an option name to see the command-line equivalent of the
option in this window.
DS50002071G-page 91 2012-2018 Microchip Technology Inc.

XC16 Toolchain and MPLAB X IDE
4.6 PROJECT EXAMPLE

In this example, you will create an MPLAB X IDE project with two C code files.

• Run the Project Wizard

• Add a File to the Project

• Build and Run the Project

• Output Files

• Further Development

4.6.1 Run the Project Wizard

In MPLAB X IDE, select File>New Project to launch the wizard.

1. Choose Project: Select “Microchip Embedded” for the category and
“Standalone Project” for the project. Click Next> to continue.

2. Select Device: Select PIC24FJ128GA010. Click Next> to continue.

3. Select Header: Select a header for this device if you are using one. Otherwise
leave as “None.” Click Next> to continue.

4. Select Tool: Choose a development tool from the list, which for this example is
the Simulator. Tool support for the selected device is shown as a colored circle
next to the tool. Mouse over the circle to see the support as text. Click Next> to
continue.

5. Select Plugin Board: Select a plugin board if you are using one. Otherwise
leave as “None.” Click Next> to continue.

6. Select Compiler: Choose a version of the XC16 toolchain installed on your PC.
Click Next> to continue.

7. Select Project Name and Folder: Enter a project name, for this example
XC16_Example. Then select a location for the project folder. Click Finish to
complete the project creation and setup.

Once the Project Wizard has completed, the Project window should contain the project
tree. For more on projects, see the MPLAB X IDE documentation.

4.6.2 Add a File to the Project

To add a C code template file to the project:

1. Right click on the “Source Files” folder in the project tree. Select
New>mainXC16.c to open the “New mainXC16.c” dialog.

2. Enter a name for the new file. The default is newmainXC16.c.

3. Enter a folder in which to place the file. The default is the project folder. Keeping
the file in the project folder makes the project more portable.

4. Click Finish.

The project tree should now have the Source Files folder open, containing the file
added, as well as the new file open in an Editor window (Figure 4-4).

Note: If you add more than one file, the order in which you add these files to the
project is the order in which they will be linked.
 2012-2018 Microchip Technology Inc. DS50002071G-page 92

MPLAB® XC16 C Compiler User’s Guide
FIGURE 4-4: PROJECT TREE AND SOURCE CODE

4.6.3 Build and Run the Project

To set up build options, you can select File>Project Properties or right click on the
project name and select “Properties” to open the Project Properties dialog. For this
example, default options will be used so no additional set up is required.

Click the Debug Main Project icon to build the code, program the target device (if a
hardware tool is selected) and start the debug session. Because of the example code
used, the application will run and then stop. To finish execution, click the Finish
Debugger Session icon.

If the build did not complete successfully, check these items:

1. Review the previous steps in this example. Make sure you have installed and set
up the MPLAB XC16 C compiler so that MPLAB X IDE can see it. See
Section 4.3 “MPLAB X IDE Setup.”

2. If you modified the sample source code, examine the Build tab of the Output win-
dow for syntax errors in the source code. If you find any, click on the error to go
to the source code line that contains that error. Correct the error, and then try the
build again.

Debug Main Project Icon

Finish Debugger Session Icon
DS50002071G-page 93 2012-2018 Microchip Technology Inc.

XC16 Toolchain and MPLAB X IDE
4.6.4 Output Files

View the project output files by opening the files in MPLAB X IDE.

1. Select File>Open File. In the Open dialog, find the project directory. For example,
in Windows 7 OS:
C:\Users\UserName\MPLABXProjects\XC16_Example.X

2. Under the project directory, locate the linker map file. For the example above:
C:\Users\UserName\MPLABXProjects\XC16_Example.X\
dist\default\debug\XC16_Example.X.debug.map

3. View the linker map file in an MPLAB X IDE editor window. For more on this file,
see the linker documentation.

4. In the same directory there is another file, XC16_Example.X.debug.elf. This
file contains debug information and is used by debug tools to debug your code.
For information on selecting the type of debug file, see Section 4.5.1 “XC16
(Global Options).”

4.6.5 Further Development

In addition to the MPLAB X Simulator used in this example, several other debug tools
exist that work with MPLAB X IDE. You may choose from in-circuit emulators or
in-circuit debuggers, manufactured by Microchip Technology or third-party developers.
Please see the documentation for these tools to learn how they can help you.

Once you have developed your code, you will want to program it into a device. Again,
there are several programmers that work with MPLAB X IDE to help you do this. Please
see the documentation for these tools to see how they can help you. When
programming, use the Make and Program Device Project button on the debug
toolbar. Please see MPLAB X IDE documentation concerning this control.
 2012-2018 Microchip Technology Inc. DS50002071G-page 94

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 5. Compiler Command-Line Driver
5.1 INTRODUCTION

The compiler command-line driver (xc16-gcc) is the application that invokes the oper-
ation of the MPLAB XC16 C Compiler. The driver compiles, assembles and links C and
assembly language modules and library archives. Most of the compiler command-line
options are common to all implementations of the GCC toolset. A few are specific to
the compiler and will be discussed below.

The compiler driver also may be used with MPLAB X IDE. Compiler options are
selected in the GUI and passed to the compiler driver for execution.

Topics concerning the command-line use of the driver are discussed below.

• Invoking the Compiler

• The Compilation Sequence

• Runtime Files

• Compiler Output

• Compiler Messages

• Driver Option Descriptions

• MPLAB X IDE Toolchain Equivalents
 2012-2018 Microchip Technology Inc. DS50002071G-page 94

Compiler Command-Line Driver
5.2 INVOKING THE COMPILER

The compiler is invoked and run on the command line as specified in the next section.
Additionally, environmental variables and input files used by the compiler are discussed
in the following sections.

5.2.1 Drive Command-Line Format

The basic form of the compiler command line is:

xc16-gcc [options] files

where:

options: See Section 5.7 “Driver Option Descriptions.” for available options.

files: See Section 5.2.3 “Input File Types.” for details.

It is assumed in this manual that the compiler applications are either in the console’s
search path (see Section 5.2.2 “Environment Variables.”) or the full path is specified
when executing any application.

It is conventional to supply options (identified by a leading dash “-”) before the file
names, although this is not mandatory.

The files may be any mixture of C and assembler source files and precompiled inter-
mediate files, such as relocatable object (.o) files. The order of the files is not import-
ant, except that it may affect the order in which code or data appears in memory.

For example, to compile, assemble and link the C source file hello.c, creating a
relocatable object output, hello.elf.

xc16-gcc -mcpu=30f2010 -T p30f2010.gld -o hello.elf hello.c

5.2.2 Environment Variables

The variables in this section are optional, but if defined, they will be used by the
compiler. The compiler driver, or other subprogram, may choose to determine an
appropriate value for some of the following environment variables if they are unset. The
driver, or other subprogram, takes advantage of internal knowledge about the
installation of the compiler. As long as the installation structure remains intact, with all
subdirectories and executables remaining in the same relative position, the driver or
subprogram will be able to determine a usable value.

Note: Command-line options and file name extensions are case-sensitive.
 2012-2018 Microchip Technology Inc. DS50002071G-page 95

MPLAB® XC16 C Compiler User’s Guide
TABLE 5-1: COMPILER-RELATED ENVIRONMENTAL VARIABLES

Variable Definition

XC16_C_INCLUDE_PATH
PIC30_C_INCLUDE_PATH

This variable’s value is a semicolon-separated list of directories, much like PATH.
When the compiler searches for header files, it tries the directories listed in the vari-
able, after the directories specified with -I but before the standard header file directo-
ries.
If the environment variable is undefined, the preprocessor chooses an appropriate
value based on the standard installation. By default, the following directories are
searched for the following include files:
<install-path>\include and
<install-path>\support\h

XC16_COMPILER_
PATH
PIC30_COMPILER_
PATH

The value of the variable is a semicolon-separated list of directories, much like PATH.
The compiler tries the directories thus specified when searching for subprograms, if it
can’t find the subprograms using PIC30_EXEC_PREFIX.

XC16_EXEC_
PREFIX
PIC30_EXEC_
PREFIX

If the environment variable is set, it specifies a prefix to use in the names of subpro-
grams executed by the compiler. No directory delimiter is added when this prefix is
combined with the name of a subprogram, but you can specify a prefix that ends with a
slash if you wish. If the compiler cannot find the subprogram using the specified prefix,
it tries looking in your PATH environment variable.
If the environment variable is not set or set to an empty value, the compiler driver
chooses an appropriate value based on the standard installation. If the installation has
not been modified, this will result in the driver being able to locate the required subpro-
grams.
Other prefixes specified with the -B command line option take precedence over the
user- or driver-defined value of the variable.
Under normal circumstances it is best to leave this value undefined and let the driver
locate subprograms itself.

XC16_LIBRARY_
PATH
PIC30_LIBRARY_
PATH

This variable’s value is a semicolon-separated list of directories, much like PATH. This
variable specifies a list of directories to be passed to the linker. The driver’s default
evaluation of this variable is:
<install-path>\lib; <install-path>\support\gld.

XC16_OMF
PIC30_OMF

Specifies the OMF (Object Module Format) to be used by the compiler. By default, the
tools create ELF object files. If the environment variable has the value coff, the tools
will create COFF object files.

TMPDIR If the variable is set, it specifies the directory to use for temporary files. The compiler
uses temporary files to hold the output of one stage of compilation that is to be used as
input to the next stage: for example, the output of the preprocessor, which is the input
to the compiler proper.
DS50002071G-page 96 2012-2018 Microchip Technology Inc.

Compiler Command-Line Driver
5.2.3 Input File Types

The compilation driver distinguishes source files, intermediate files and library files
solely by the file type, or extension. It recognizes the following file extensions, which
are case-sensitive.

There are no compiler restrictions imposed on the names of source files, but be aware
of case, name-length and other restrictions imposed by your operating system. If you
are using an IDE, avoid assembly source files whose basename is the same as the
basename of any project in which the file is used. This may result in the source file
being overwritten by a temporary file during the build process.

The terms “source file” and “module” are often used when talking about computer
programs. They are often used interchangeably, but they refer to the source code at
different points in the compilation sequence.

A source file is a file that contains all or part of a program. Source files are initially
passed to the preprocessor by the driver.

A module is the output of the preprocessor, for a given source file, after inclusion of any
header files (or other source files) which are specified by #include preprocessor
directives. These modules are then passed to the remainder of the compiler applica-
tions. Thus, a module may consist of several source and header files. A module is also
often referred to as a translation unit. These terms can also be applied to assembly
files, as they too can include other header and source files.

TABLE 5-2: FILE NAMES

Extensions Definition

file.c A C source file that must be preprocessed.

file.h A header file (not to be compiled or linked).

file.i A C source file that should not be preprocessed.

file.o An object file.

file.p A pre procedural-abstraction assembly language file.

file.s Assembler code.

file.S Assembler code that must be preprocessed.

other A file to be passed to the linker.
 2012-2018 Microchip Technology Inc. DS50002071G-page 97

MPLAB® XC16 C Compiler User’s Guide
5.3 THE COMPILATION SEQUENCE

How the compiler operates with other applications and how to perform different types
of compilations is discussed in the following sections.

5.3.1 The Compiler Applications

The MPLAB XC16 C Compiler compiles C source files, producing assembly language
files. These compiler-generated files are assembled and linked with other object files
and libraries to produce the final application program in executable ELF or COFF file
format. The ELF or COFF file can be loaded into the MPLAB X IDE, where it can be
tested and debugged, or the conversion utility can be used to convert the ELF or COFF
file to Intel® hex format, suitable for loading into the command-line simulator or a device
programmer. A software development tools data flow diagram is shown in
Section 4.4 “MPLAB X IDE Projects.”

The driver program will call the required internal compiler applications. These applica-
tions are shown as the smaller boxes inside the large driver box. The temporary file pro-
duced by each application can also be seen in this diagram.

Table 5-3 lists the compiler applications. The names shown are the names of the exe-
cutables, which can be found in the bin directory under the compiler’s installation
directory. Your PATH environment variable should include this directory.

TABLE 5-3: COMPILER APPLICATION NAMES

Name Description

xc16-gcc Command line driver; the interface to the compiler

xc16-as Assembler (based on the target device)

xc16-ld Linker

xc16-bin2hex Conversion utility to create HEX files

xc16-strings String extractor utility

xc16-strip Symbol stripper utility

xc16-nm Symbol list utility

xc16-ar Archiver/Librarian

xc16-objdump Object file display utility

xc16-ranlib Archive indexer utility
DS50002071G-page 98 2012-2018 Microchip Technology Inc.

Compiler Command-Line Driver
5.3.2 Single-Step Compilation

A single command-line can be used to compile one file or multiple files.

5.3.2.1 COMPILING A SINGLE FILE

This section demonstrates how to compile and link a single file. For the purpose of this
discussion, it is assumed the compiler is installed in the standard directory location and
that your PATH or other environment variables (see Section 5.2.2 “Environment Vari-
ables.”) are set up in such a way that the full compiler path need not be specified when
you run the compiler.

The following is a simple C program that adds two numbers.

Create the following program with any text editor and save it as ex1.c.

#include <xc.h>
int main(void);
unsigned int Add(unsigned int a, unsigned int b);
unsigned int x, y, z;
int
main(void)
{
 x = 2;
 y = 5;
 z = Add(x,y);
 return 0;
}
unsigned int
Add(unsigned int a, unsigned int b)
{
 return(a+b);
}

The first line of the program includes the header file xc.h, which will include the appro-
priate header files that provides definitions for all special function registers on the target
device. For more information on header files, see Section 6.3 “Device Header Files.”

Compile the program by typing the following at the prompt in your favorite terminal.

xc16-gcc -mcpu=30f2010 -T p30f2010.gld -o ex1.elf ex1.c

The command-line option -o ex1.elf names the output executable file (if the -o
option is not specified, then the output file is named a.out). The executable file may
be loaded into the MPLAB X IDE.

If a hex file is required, for example, to load into a device programmer, then use the
following command:

xc16-bin2hex ex1.elf

This creates an Intel hex file named ex1.hex.
 2012-2018 Microchip Technology Inc. DS50002071G-page 99

MPLAB® XC16 C Compiler User’s Guide
5.3.2.2 COMPILING MULTIPLE FILES

Move the Add() function into a file called add.c to demonstrate the use of multiple
files in an application. That is:

File 1
/* ex1.c */
#include <xc.h>
int main(void);
unsigned int Add(unsigned int a, unsigned int b);
unsigned int x, y, z;
int main(void)
{
 x = 2;
 y = 5;
 z = Add(x,y);
 return 0;
}
File 2
/* add.c */
#include <xc.h>
unsigned int
Add(unsigned int a, unsigned int b)
{
 return(a+b);
}

Compile both files in the one command by typing the following in your terminal program.

xc16-gcc -mcpu=30f2010 -T p30f2010.gld -o ex1.elf ex1.c add.c

This command compiles the modules ex1.c and add.c. The compiled modules are
linked with the compiler libraries and the executable file ex1.elf is created.
DS50002071G-page 100 2012-2018 Microchip Technology Inc.

Compiler Command-Line Driver
5.3.3 Multi-Step Compilation

Make utilities and integrated development environments, such as MPLAB IDE, allow
for an incremental build of projects that contain multiple source files. When building a
project, they take note of which source files have changed since the last build and use
this information to speed up compilation.

For example, if compiling two source files, but only one has changed since the last
build, the intermediate file corresponding to the unchanged source file need not be
regenerated.

If the compiler is being invoked using a make utility, the make file will need to be con-
figured to recognize the different intermediate file format and the options used to gen-
erate the intermediate files. Make utilities typically call the compiler multiple times: once
for each source file to generate an intermediate file and once to perform the second
stage compilation.

You may also wish to generate intermediate files to construct your own library files,
although MPLAB XC16 is capable of constructing libraries so this is typically not nec-
essary. See MPLAB® XC16 Assembler, Linker and Utilities User’s Guide
(DS50002106) for more information on library creation.

For example, the files ex1.c and add.c are to be compiled using a make utility. The
command lines that the make utility should use to compile these files might be some-
thing like:

xc16-gcc -mcpu=30f6014 -c ex1.c
xc16-gcc -mcpu=30f6014 -c add.c
xc16-gcc -mcpu=30f6014 -o ex1 ex1.o add.o

The -c option will compile the named file into the intermediate (object) file format, but
not link. Once all files are compiled as specified by the make, then the resultant object
files are linked in the final step to create the final output ex1. The above example uses
the command-line driver, xc16-gcc, to perform the final link step. You can explicitly
call the linker application, xc16-ld, but this is not recommended. When driving the linker
application, you must specify linker options, not driver options. For more on using the
linker, see MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106).

When compiling debug code, the object module format (OMF) must be consistent for
compilation, assembly and linking. The ELF/DWARF format is used by default but the
COFF format may also be selected using -omf=coff or the environmental variable
XC16_OMF.

5.3.4 Assembly Compilation

A mix of C and assembly code can be compiled together using the compiler
(Figure 4-2). For more details, see Chapter 16. “Mixing C and Assembly Code.”

Additionally, the compiler may be used to generate assembly code (.s) from C code
(.c) using the -S option. The assembly output may then be used in subsequent com-
pilation using the command-line driver.
 2012-2018 Microchip Technology Inc. DS50002071G-page 101

MPLAB® XC16 C Compiler User’s Guide
5.4 RUNTIME FILES

The compiler uses the following files in addition to source, linker and header files.

5.4.1 Library Files

The compiler may include library files into the output per Figure 4-2.

By default, xc16-gcc will search known locations under the compiler installation direc-
tory for library files that are required during compilation.

5.4.1.1 STANDARD LIBRARIES

The C standard libraries contain a standardized collection of functions, such as string,
math and input/output routines. The range of these functions is described in the “16-Bit
Language Tool Libraries” (DS51456).

5.4.1.2 USER-DEFINED LIBRARIES

You may create your own libraries. Libraries are useful for bundling and precompiling
selected functions so that application file management is easier and application com-
pilation times are shorter.

Libraries can be created manually using the compiler and the librarian. To create files
that may then be used as input to the 16-bit librarian (xc16-ar), use the -c compiler
option to stop compilation before the linker stage. For information on using the librarian,
see the MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106).

Libraries should be called liblibrary.a and can be added to the compiler command
line by specifying its pathname (-Ldir) and -llibrary. For details on these options,
see Section 5.7.9 “Options for Linking.”

A simple example of adding the library libmyfns.a to the command-line is:

xc16-gcc -mcpu=30f2010 -lmyfns example.c

Library files specified on the command line are scanned first for unresolved symbols,
so these files may redefine anything that is defined in the C standard libraries.

5.4.1.3 USER-DEFINED LIBRARIES DEVELOPMENT

When creating your own libraries, follow the guidelines listed below.

Library and Supporting Files

No library file should contain a main() function, nor settings for configuration bits or
any other such data.

As with Standard C library functions, any functions contained in user-defined libraries
should have a declaration added to a header file. It is common practice to create one
or more header files that are packaged with the library file. These header files can then
be included into source code when required.

OMF Libraries

MPLAB XC16 supports two object file formats, often called OMF for object module for-
mat. COFF is an older standard and is not recommend. ELF, combined with its debug-
ging format DWARF, produces executables that contain a richer language for
describing the artifacts of the executable program from a debugging perspective.
DS50002071G-page 102 2012-2018 Microchip Technology Inc.

Compiler Command-Line Driver
Should you wish to produce generic libraries that are COFF and ELF compatible, we
recommend that each library be separated and named liblibrary-elf.a and
liblibrary-coff.a. Each library, of course, should contain objects built for the
appropriate OMF. Naming the libraries in this way will allow the linker to choose a cor-
rect library from the standard library inclusion option and the current OMF. In other
words, -llibrary will match first against liblibrary.a followed by
liblibrary-OMF.a. This makes it easier to switch between COFF and ELF.

Device Specific and Generic Libraries

If you would like to produce a library that will be compatible with a range of 16-bit
devices, you may need to include more than one copy of each object file in the library.
This is perfectly acceptable, as long as each copy has a unique name. The linker will
reject object files that do not match the characteristics of the user selected device.

Consider a simple library that contains one file (and one function) name
hello_world.c; you can guess at its use. The desire of this function is to work on a
range of devices, for example: dsPIC30F6014, dsPIC33EP512MU810 and PIC24F16-
KA302. Compile hello_world.c once for each device and combine them into one
library:

xc16-gcc -O1 -c hello_world.c -mcpu=30F6014 -o hello_world.30f.o
xc16-gcc -O1 -c hello_world.c -mcpu=33EP512MU810 -o hello_world.33ep.o
xc16-gcc -O1 -c hello_world.c -mcpu=24F16KA302 -o hello_world.24f.o
xc16-ar crv libhello_world-elf.a hello_world.30f.o hello_world.33ep.o
hello_world.24f.o

This would produce a library that can be linked against any one of those devices.

xc16-gcc -O1 test.c -mcpu=30F6014 -o test.exe -L. -lhello_world

If a library is required to link against any device, the use of a set of generic device
names, listed in Readme_XC16.html or acquired directly from the tool using the com-
piler option -mprint-devices, will produce object files that will link against any
device.

5.4.2 Startup and Initialization

Two kinds of startup modules are available to initialize the C runtime environment:

• The primary startup module which is linked by default (or the -Wl, --data-init
option.)

• The alternate startup module which is linked when the -Wl, --no-data-init
option is specified (no data initialization.)

These modules are included in the libpic30-omf.a archive/library. Multiple versions
of these modules exist in order to support architectural differences between device
families. The compiler automatically uses the correct module.

For more information on the startup modules, see Section 15.3 “Runtime Startup and
Initialization.”
 2012-2018 Microchip Technology Inc. DS50002071G-page 103

MPLAB® XC16 C Compiler User’s Guide
5.5 COMPILER OUTPUT

There are many files created by the compiler during the compilation. A large number of
these are intermediate files are deleted after compilation is complete, but many remain
and are used for programming the device or for debugging purposes.

5.5.1 Output Files

The compilation driver can produce output files with the following extensions, which are
case-sensitive.

The names of many output files use the same base name as the source file from which
they were derived. For example the source file input.c will create an object file called
input.o when the -c option is used.

The default output file is a ELF file called a.out, unless you override that name using
the -o option.

If you are using MPLAB X IDE to specify options to the compiler, there is typically a proj-
ect file that is created for each application. The name of this project is used as the base
name for project-wide output files, unless otherwise specified by the user. However
check the manual for the IDE you are using for more details.

The compiler is able to directly produce a number of the output file formats which are
used by Microchip development tools.

The default behavior of xc16-gcc is to produce a ELF output. To make changes to the
files output or the file names, see Section 5.7 “Driver Option Descriptions.”

TABLE 5-4: FILE NAMES

Extensions Definition

file.hex Executable file

file.cof COF debug file (default)

file.elf ELF debug file

file.o Object file (intermediate file)

file.S Assembly code file (required preprocessing)

file.s Assembly code file (intermediate file)

file.i Preprocessed file (intermediate file)

file.p Preprocedure abstraction assembly language file (intermediate file)

file.map Map file

Note: Throughout this manual, the term project name will refer to the name of the
project created in the IDE.
DS50002071G-page 104 2012-2018 Microchip Technology Inc.

Compiler Command-Line Driver
5.5.2 Diagnostic Files

Two valuable files produced by the compiler are:

• The assembly list file, produced by the assembler.

• The map file, produced by the linker.

The assembly list file contains the mapping between the original source code and the
generated assembly code. It is useful for information such as how C source was
encoded, or how assembly source may have been optimized. It is essential when con-
firming if compiler-produced code that accesses objects is atomic, and shows the
region in which all objects and code are placed.

The option to create a listing file in the assembler is -a. There are many variants to this
option, which may be found in the MPLAB® XC16 Assembler, Linker and Utilities User’s
Guide (DS50002106). To pass the option from the compiler, see Section 5.7.8 “Options
for Assembling.”

There is one list file produced for each build. Thus, if you require a list file for each
source file, these files must be compiled separately, see Section 5.3.3 “Multi-Step
Compilation.” This is the case if you build using MPLAB IDE. Each list file will be
assigned the module name and extension .lst.

The map file shows information relating to where objects were positioned in memory. It
is useful for confirming if user-defined linker options were correctly processed, and for
determining the exact placement of objects and functions.

The linker option to create a map file in the linker application is -Map file, which may
be found in the MPLAB® XC16 Assembler, Linker and Utilities User’s Guide
(DS50002106). To specify the option from the command-line driver, see
Section 5.7.9 “Options for Linking.”

One map file is produced when you build a project, assuming that the linker was
executed and ran to completion.
 2012-2018 Microchip Technology Inc. DS50002071G-page 105

MPLAB® XC16 C Compiler User’s Guide
5.6 COMPILER MESSAGES

Compiler output messages for errors, warnings, or comments are discussed in
Appendix C. “Diagnostics.”

For information on options that control compiler output of errors, warnings, or
comments, see Section 5.7.4 “Options for Controlling Warnings and Errors.”

There are no pragmas that directly control messages issued by the compiler.

5.7 DRIVER OPTION DESCRIPTIONS

The compiler has many options for controlling compilation, all of which are
case-sensitive. They have been grouped, as shown below, according to their function.
Remember, these are options for the command-line driver; refer to
Section 5.7.8 “Options for Assembling.” or Section 5.7.9 “Options for Linking.” for infor-
mation on specifying options for these tools to the compiler.

• Options Specific to 16-Bit Devices

• Options for Controlling the Kind of Output

• Options for Controlling the C Dialect

• Options for Controlling Warnings and Errors

• Options for Debugging

• Options for Controlling Optimization

• Options for Controlling the Preprocessor

• Options for Assembling

• Options for Linking

• Options for Directory Search

• Options for Code Generation Conventions

• Miscellaneous Options
DS50002071G-page 106 2012-2018 Microchip Technology Inc.

Compiler Command-Line Driver
5.7.1 Options Specific to 16-Bit Devices

For more information on the memory models, see Section 10.15 “Memory Models.”

TABLE 5-5: 16-BIT DEVICE-SPECIFIC OPTIONS

Option Definition

-mconst-in-code Put const qualified variables in the auto_psv space. The compiler will access these
variables using the PSV window (This is the default).

-mconst-in-data Put const qualified variables in the data memory space.

-mconst-in-
auxflash

When combined with -mconst-in-code, put all const qualified file scope variables into
auxiliary Flash. All modules with auxiliary Flash should be compiled with this option; otherwise
a link error may occur.

-mcpu=
 target

This option selects the target processor ID (and communicates it to the assembler and linker if
those tools are invoked). This option affects how some predefined constants are set; see
Section 19.4 “Predefined Macro Names.” for more information. A full list of accepted targets
can be seen in the Readme.htm file that came with the release.

-mno-eds-warn On some devices, there is a possibility that the stack will reside in EDS (extended data space)
memory (above 0x8000), though this allocation is disabled by default in the linker. If the stack
is located in this area, then taking the address of an auto variable would require an __eds__
pointer. As the compiler does not know where the stack will be located, the default is to be
conservative and warn if the address of an auto is taken and not used as an __eds__ pointer.
This option disables the warning.

-merrata=
 id[,id]*

This option enables specific errata work arounds identified by id. Valid values for id change
from time to time and may not be required for a particular variant. An id of list will display
the currently supported errata identifiers along with a brief description of the errata. An id of
all will enable all currently supported errata work arounds.

-mno-errata=
 id[,id]*

This option disables specific errata work arounds identified by id. Valid values for id change
from time to time. This is particularly useful when specifying errata with -merrata=all as it
can be used to disable some errata that are not required. -mno-errata=foo will prevent the
erratum foo from being enabled no matter where it appears on the command line. Therefore,
-mno-errata=foo -merrata=foo will not enable erratum foo.

-mno-file Do not emit a .file directive in the generated assembly file. This is useful when creating
libraries where the source code may not reside on the end-user's machine, as this will prevent
the IDE from trying to load the source file during a debug session.

-mfillupper Specify the upper byte of variables stored into space(prog) sections. The fillupper
attribute will perform the same function on individual variables.

-mlarge-arrays Specifies that arrays may be larger than the default maximum size of 32K. See
Section 6.7 “Bit-Reversed and Modulo Addressing.” for more information.

-mlarge-code Compile using the large code model. No assumptions are made about the locality of called
functions.
When this option is chosen, single functions that are larger than 32k are not supported and
may cause assembly-time errors since all branches inside of a function are of the short form.

-mlarge-data Compile using the large data model. No assumptions are made about the location of static and
external variables.

-mlegacy-libc MPLAB XC16 (originally MPLAB C30) has a long history. This option allows us to support pre-
viously deployed C libraries as needed (This is the default.)

-moptimize-page
 -setting

Attempt to reduce the number page switches when using memory modes that affect the
PSVPAG. This is really an optimization, and is not enabled by default. Like all optimizations it
will generally have a positive effect on performance or code size.
 2012-2018 Microchip Technology Inc. DS50002071G-page 107

MPLAB® XC16 C Compiler User’s Guide
-mpa(1) Enable the procedure abstraction optimization. There is no limit on the nesting level.
Optimization levels depend on the compiler edition (see Chapter 18. “Optimizations.”).

-mpa=n(1) Enable the procedure abstraction optimization up to level n. If n is zero, the optimization is dis-
abled. If n is 1, first level of abstraction is allowed; that is, instruction sequences in the source
code may be abstracted into a subroutine. If n is 2, a second level of abstraction is allowed;
that is, instructions that were put into a subroutine in the first level may be abstracted into a
subroutine one level deeper. This pattern continues for larger values of n. The net effect is to
limit the subroutine call nesting depth to a maximum of n.
Optimization levels depend on the compiler edition (see Chapter 18. “Optimizations.”).

-mno-pa(1) Do not enable the procedure abstraction optimization (This is the default).

-mpreserve-all Make all variables in this translation unit preserved unless explicitly marked with the update
attribute.

-mprint-
 builtins

Display the complete list of target builtin functions available in the compiler.

-mprint-devices Display the complete list of real and virtual devices supported by the current installation.

-mprint-mchp-
 search-dirs

A target-specific option to output the compiler and assembler include search paths to the con-
sole. These paths can change based upon various options.

-mno-isr-warn By default the compiler will produce a warning if the __interrupt__ is not attached to a
recognized interrupt vector name. This option will disable that feature.

-omf Selects the OMF (Object Module Format) to be used by the compiler. The omf specifier can
be one of the following:
elf Produce ELF object files (This is the default).
coff Produce COFF object files.
The debugging format used for ELF object files is DWARF 2.0.

-msfr-warn By default we warn when accessing SFRs for a generic device; use -mno-sfr-warn to
disable this feature.

-msmall-code Compile using the small code model. Called functions are assumed to be proximate (within 32
Kwords of the caller). (This is the default.)

-msmall-data Compile using the small data model. All static and external variables are assumed to be
located in the lower 8 KB of data memory space. (This is the default.)

-msmall-scalar Like -msmall-data, except that only static and external scalars are assumed to be in the
lower 8 KB of data memory space. (This is the default.)

Note 1: The procedure abstractor behaves as the inverse of inlining functions. The pass is designed
to extract common code sequences from multiple sites throughout a translation unit and place
them into a common area of code. Although this option generally does not improve the
run-time performance of the generated code, it can reduce the code size significantly. Pro-
grams compiled with -mpa can be harder to debug; it is not recommended that this option be
used while debugging using the COFF object format.
The procedure abstractor is invoked as a separate phase of compilation, after the production
of an assembly file. This phase does not optimize across translation units. When the proce-
dure-optimizing phase is enabled, inline assembly code must be limited to valid machine
instructions. Invalid machine instructions or instruction sequences, or assembler directives
(sectioning directives, macros, include files, etc.), must not be used, or the procedure abstrac-
tion phase will fail, inhibiting the creation of an output file.

TABLE 5-5: 16-BIT DEVICE-SPECIFIC OPTIONS (CONTINUED)

Option Definition
DS50002071G-page 108 2012-2018 Microchip Technology Inc.

Compiler Command-Line Driver
-msmart-io-
 format=fmt

When using smart-io the compiler is not able to detect the format string when it is a variable.
-msmart-io-format can be used to tell the compiler which format specifiers to expect in
such a string. For example:
printf(stderr,fmt,a,b,c);
can be compiled with -msmart-io-fmt="%s%c%d" to define the default format and smart-io
will generate code to match this set of format specifiers when it cannot determine the correct
format specifiers at runtime.

-mtext=name Specifying -mtext=name will cause text (program code) to be placed in a section named
name rather than the default .text section. No white spaces should appear around the =.

-mauxflash Place all code from the current translation unit into auxiliary Flash. This option is only available
on devices that have auxiliary Flash.

-msmart-io
[=0|1|2]

This option attempts to statically analyze format strings passed to printf, scanf and the ‘f’
and ‘v’ variations of these functions. Uses of nonfloating point format arguments will be con-
verted to use an integer-only variation of the library functions.
-msmart-io=0 disables this option, while -msmart-io=2 causes the compiler to be opti-
mistic and convert function calls with variable or unknown format arguments. -msmart-io=1
is the default and will only convert the literal values it can prove.

--partition n This option targets a single partition n in a dual partition device and will constrain the output
text to be contained within one panel.

TABLE 5-5: 16-BIT DEVICE-SPECIFIC OPTIONS (CONTINUED)

Option Definition
 2012-2018 Microchip Technology Inc. DS50002071G-page 109

MPLAB® XC16 C Compiler User’s Guide
5.7.2 Options for Controlling the Kind of Output

The following options control the kind of output produced by the compiler.

TABLE 5-6: KIND-OF-OUTPUT CONTROL OPTIONS

Option Definition

-c Compile or assemble the source files, but do not link. The default file extension is .o.

-E Stop after the preprocessing stage, i.e., before running the compiler proper. The default
output file is stdout.

-o file Place the output in file.

-S Stop after compilation proper (i.e., before invoking the assembler). The default output file
extension is .s.

--help Print a description of the command-line options.
DS50002071G-page 110 2012-2018 Microchip Technology Inc.

Compiler Command-Line Driver
5.7.3 Options for Controlling the C Dialect

The following options define the kind of C dialect used by the compiler.

TABLE 5-7: C DIALECT CONTROL OPTIONS

Option Definition

-ansi Support all (and only) ANSI-standard C programs.

-aux-info filename Output to the given file name prototype declarations for all functions declared
and/or defined in a translation unit, including those in header files. This option is
silently ignored in any language other than C. Besides declarations, the file indi-
cates, in comments, the origin of each declaration (source file and line), whether
the declaration was implicit, prototyped or unprototyped (I, N for new or O for old,
respectively, in the first character after the line number and the colon), and
whether it came from a declaration or a definition (C or F, respectively, in the
following character). In the case of function definitions, a K&R-style list of argu-
ments followed by their declarations is also provided, inside comments, after the
declaration.

-menable-fixed
[=rounding mode]

Enable fixed-point variable types and arithmetic operation support. Optionally, set
the default rounding mode to one of truncation, conventional, or conver-
gent. If the rounding mode is not specified, the default is truncation.

-ffreestanding Assert that compilation takes place in a freestanding
environment. This implies -fno-builtin. A freestanding environment is one in
which the standard library may not exist, and program startup may not necessarily
be at main. The most obvious example is an OS kernel. This is equivalent to
-fno-hosted.

-fno-asm Will not recognize asm, inline or typeof as a keyword, so that code can use
these words as identifiers. You can use the keywords __asm__, __inline__
and __typeof__ instead.
-ansi implies -fno-asm.

-fno-builtin
-fno-builtin-function

Will not recognize built-in functions that do not begin with __builtin_ as prefix.

-fsigned-char Let the type char be signed, like signed char.
(This is the default.)

-fsigned-bitfields
-funsigned-bitfields
-fno-signed-bitfields
-fno-unsigned-bitfields

These options control whether a bit-field is signed or unsigned, when the declara-
tion does not use either signed or unsigned. By default, such a bit-field is signed,
unless -traditional is used, in which case bit-fields are always unsigned.

-funsigned-char Let the type char be unsigned, like unsigned char.
 2012-2018 Microchip Technology Inc. DS50002071G-page 111

MPLAB® XC16 C Compiler User’s Guide
5.7.4 Options for Controlling Warnings and Errors

Warnings are diagnostic messages that report constructions that are not inherently erroneous but that are
risky or suggest there may have been an error.

You can request many specific warnings with options beginning -W, for example, -Wimplicit, to request
warnings on implicit declarations. Each of these specific warning options also has a negative form beginning
-Wno- to turn off warnings, for example, -Wno-implicit. This manual lists only one of the two forms,
whichever is not the default.

5.7.4.1 OPTIONS TO CONTROL THE AMOUNT AND TYPES OF WARNINGS

The following options control the amount and kinds of warnings produced by the compiler.

TABLE 5-8: WARNING/ERROR OPTIONS IMPLIED BY -WALL

Option Definition

-fsyntax-only Check the code for syntax, but don’t do anything beyond that.

-w Inhibit all warning messages.

-Wall All of the -W options listed in this table combined. This enables all the warnings about
constructions that some users consider questionable, and that are easy to avoid (or
modify to prevent the warning), even in conjunction with macros.

-Wchar-subscripts Warn if an array subscript has type char.

-Wcomment
-Wcomments

Warn whenever a comment-start sequence /* appears in a /* comment, or whenever
a Backslash-Newline appears in a // comment.

-Wdiv-by-zero Warn about compile-time integer division by zero. To inhibit the warning messages,
use -Wno-div-by-zero. Floating point division by zero is not warned about, as it can
be a legitimate way of obtaining infinities and NaNs.
(This is the default.)

-Werror-implicit-
 function-declaration

Give an error whenever a function is used before being declared.

-Wformat Check calls to printf and scanf, etc., to make sure that the arguments supplied
have types appropriate to the format string specified.

-Wimplicit Equivalent to specifying both -Wimplicit-int and
-Wimplicit-function-declaration.

-Wimplicit-function-
 declaration

Give a warning whenever a function is used before being declared.

-Wimplicit-int Warn when a declaration does not specify a type.

-Wmain Warn if the type of main is suspicious. main should be a function with external linkage,
returning int, taking either zero, two or three arguments of appropriate types.

-Wmissing-braces Warn if an aggregate or union initializer is not fully bracketed. In the following example,
the initializer for a is not fully bracketed, but that for b is fully bracketed.
int a[2][2] = { 0, 1, 2, 3 };
int b[2][2] = { { 0, 1 }, { 2, 3 } };

-Wmultichar
-Wno-multichar

Warn if a multi-character char constant is used. Usually, such constants are typo-
graphical errors. Since they have implementation-defined values, they should not be
used in portable code. The following example illustrates the use of a multi-character
char constant:
char
xx(void)
{
return('xx');
}

-Wparentheses Warn if parentheses are omitted in certain contexts, such as when there is an assign-
ment in a context where a truth value is expected, or when operators are nested whose
precedence people often find confusing.
DS50002071G-page 112 2012-2018 Microchip Technology Inc.

Compiler Command-Line Driver
-Wreturn-type Warn whenever a function is defined with a return-type that defaults to int. Also warn
about any return statement with no return-value in a function whose return-type is
not void.

-Wsequence-point Warn about code that may have undefined semantics because of violations of
sequence point rules in the C standard.
The C standard defines the order in which expressions in a C program are evaluated in
terms of sequence points, which represent a partial ordering between the execution of
parts of the program: those executed before the sequence point and those executed
after it. These occur after the evaluation of a full expression (one which is not part of a
larger expression), after the evaluation of the first operand of a &&, ||, ? : or ,
(comma) operator, before a function is called (but after the evaluation of its arguments
and the expression denoting the called function), and in certain other places. Other
than as expressed by the sequence point rules, the order of evaluation of subexpres-
sions of an expression is not specified. All these rules describe only a partial order
rather than a total order, since, for example, if two functions are called within one
expression with no sequence point between them, the order in which the functions are
called is not specified. However, the standards committee has ruled that function calls
do not overlap.
It is not specified, when between sequence points modifications to the values of
objects take effect. Programs whose behavior depends on this have undefined behav-
ior; the C standard specifies that “Between the previous and next sequence point, an
object shall have its stored value modified, at most once, by the evaluation of an
expression. Furthermore, the prior value shall be read only to determine the value to be
stored.” If a program breaks these rules, the results on any particular implementation
are entirely unpredictable.
Examples of code with undefined behavior are a = a++;, a[n] = b[n++] and
a[i++] = i;. Some more complicated cases are not diagnosed by this option and it
may give an occasional false positive result, but in general it has been found fairly
effective at detecting this sort of problem in programs.

-Wswitch Warn whenever a switch statement has an index of enumeral type and lacks a case
for one or more of the named codes of that enumeration. (The presence of a default
label prevents this warning.) case labels outside the enumeration range also provoke
warnings when this option is used.

-Wsystem-headers Print warning messages for constructs found in system header files. Warnings from
system headers are normally suppressed, on the assumption that they usually do not
indicate real problems and would only make the compiler output harder to read. Using
this command line option tells the compiler to emit warnings from system headers as if
they occurred in user code. However, note that using -Wall in conjunction with this
option will not warn about unknown pragmas in system headers; for that, -Wun-
known-pragmas must also be used.

-Wtrigraphs Warn if any trigraphs are encountered (assuming they are enabled).

-Wuninitialized Warn if an automatic variable is used without first being initialized.
These warnings are possible only when optimization is enabled, because they require
data flow information that is computed only when optimizing.
These warnings occur only for variables that are candidates for register allocation.
Therefore, they do not occur for a variable that is declared volatile, or whose
address is taken, or whose size is other than 1, 2, 4 or 8 bytes. Also, they do not occur
for structures, unions, or arrays, even when they are in registers.
Note that there may be no warning about a variable that is used only to compute a
value that itself is never used, because such computations may be deleted by data flow
analysis before the warnings are printed.

-Wunknown-pragmas Warn when a #pragma directive is encountered which is not understood by the com-
piler. If this command line option is used, warnings will even be issued for unknown
pragmas in system header files. This is not the case if the warnings were only enabled
by the -Wall command line option.

TABLE 5-8: WARNING/ERROR OPTIONS IMPLIED BY -WALL (CONTINUED)

Option Definition
 2012-2018 Microchip Technology Inc. DS50002071G-page 113

MPLAB® XC16 C Compiler User’s Guide
-Wunused Warn whenever a variable is unused aside from its declaration, whenever a function is
declared static but never defined, whenever a label is declared but not used, and
whenever a statement computes a result that is explicitly not used.
In order to get a warning about an unused function parameter, both -W and -Wunused
must be specified.
Casting an expression to void suppresses this warning for an expression. Similarly, the
unused attribute suppresses this warning for unused variables, parameters and
labels.

-Wunused-function Warn whenever a static function is declared but not defined or a non-inline static func-
tion is unused.

-Wunused-label Warn whenever a label is declared but not used. To suppress this warning, use the
unused attribute (see Section 8.11 “Variable Attributes.”).

-Wunused-variable Warn whenever a local variable or non-constant static variable is unused aside from its
declaration. To suppress this warning, use the unused attribute (see
Section 8.11 “Variable Attributes.”).

-Wunused-value Warn whenever a statement computes a result that is explicitly not used. To suppress
this warning, cast the expression to void.

TABLE 5-8: WARNING/ERROR OPTIONS IMPLIED BY -WALL (CONTINUED)

Option Definition
DS50002071G-page 114 2012-2018 Microchip Technology Inc.

Compiler Command-Line Driver
5.7.4.2 OPTIONS THAT ARE NOT IMPLIED BY -Wall

The following -W options are not implied by -Wall. Some of them warn about constructions that users gen-
erally do not consider questionable, but which occasionally you might wish to check for. Others warn about
constructions that are necessary or hard to avoid in some cases, and there is no simple way to modify the
code to suppress the warning.

TABLE 5-9: WARNING/ERROR OPTIONS NOT IMPLIED BY -WALL

Option Definition

-Wextra, -W Print extra warning messages for specific events. For details, see
Section 5.7.4.3 “The -W Option.”

-Waggregate-return Warn if any functions that return structures or unions are defined or called.

-Wbad-function-cast Warn whenever a function call is cast to a non-matching type. For example,
warn if int foof() is cast to anything *.

-Wcast-align Warn whenever a pointer is cast, such that the required alignment of the tar-
get is increased. For example, warn if a char * is cast to an int * .

-Wcast-qual Warn whenever a pointer is cast, so as to remove a type qualifier from the tar-
get type. For example, warn if a const char * is cast to an ordinary char
*.

-Wconversion Warn if a prototype causes a type conversion that is different from what would
happen to the same argument in the absence of a prototype. This includes
conversions of fixed point to floating and vice versa, and conversions chang-
ing the width or signedness of a fixed point argument, except when the same
as the default promotion.
Also, warn if a negative integer constant expression is implicitly converted to
an unsigned type. For example, warn about the assignment x = -1 if x is
unsigned. But do not warn about explicit casts like (unsigned) -1.

-Werror Make all warnings into errors.

-Winline Warn if a function can not be inlined and was either declared as inline, or else
the -finline-functions option was given.

-Wlarger-than=len Warn whenever an object of larger than len bytes is defined.

-Wlong-long
-Wno-long-long

Warn if long long type is used. This is default. To inhibit the warning mes-
sages, use -Wno-long-long. Flags -Wlong-long and -Wno-long-long
are taken into account only when -pedantic flag is used.

-Wmissing-declarations Warn if a global function is defined without a previous declaration. Do so even
if the definition itself provides a prototype.

-Wmissing-
 format-attribute

If -Wformat is enabled, also warn about functions that might be candidates
for format attributes. Note these are only possible candidates, not absolute
ones. This option has no effect unless -Wformat is enabled.

-Wmissing-noreturn Warn about functions that might be candidates for attribute noreturn. These
are only possible candidates, not absolute ones. Care should be taken to
manually verify functions. Actually, do not ever return before adding the
noreturn attribute; otherwise subtle code generation bugs could be intro-
duced.

-Wmissing-prototypes Warn if a global function is defined without a previous prototype declaration.
This warning is issued even if the definition itself provides a prototype. (This
option can be used to detect global functions that are not declared in header
files.)

-Wnested-externs Warn if an extern declaration is encountered within a function.

-Wno-deprecated-
 declarations

Do not warn about uses of functions, variables and types marked as depre-
cated by using the deprecated attribute.

-Wpadded Warn if padding is included in a structure, either to align an element of the
structure or to align the whole structure.
 2012-2018 Microchip Technology Inc. DS50002071G-page 115

MPLAB® XC16 C Compiler User’s Guide
-Wpointer-arith Warn about anything that depends on the size of a function type or of void.
The compiler assigns these types a size of 1, for convenience in calculations
with void * pointers and pointers to functions.

-Wredundant-decls Warn if anything is declared more than once in the same scope, even in
cases where multiple declaration is valid and changes nothing.

-Wshadow Warn whenever a local variable shadows another local variable.

-Wsign-compare
-Wno-sign-compare

Warn when a comparison between signed and unsigned values could pro-
duce an incorrect result when the signed value is converted to unsigned. This
warning is also enabled by -W; to get the other warnings of -W without this
warning, use -W -Wno-sign-compare.

-Wstrict-prototypes Warn if a function is declared or defined without specifying the argument
types. (An old-style function definition is permitted without a warning if pre-
ceded by a declaration which specifies the argument types.)

-Wtraditional Warn about certain constructs that behave differently in traditional and ANSI
C.
• Macro arguments occurring within string constants in the macro body.

These would substitute the argument in traditional C, but are part of the
constant in ANSI C.

• A function declared external in one block and then used after the end of
the block.

• A switch statement has an operand of type long.
• A nonstatic function declaration follows a static one. This construct is not

accepted by some traditional C compilers.

-Wundef Warn if an undefined identifier is evaluated in an #if directive.

-Wwrite-strings Give string constants the type const char[length] so that copying the
address of one into a non-const char * pointer will get a warning. These
warnings will help you find at compile time code that you can try to write into a
string constant, but only if you have been very careful about using const in
declarations and prototypes. Otherwise, it will just be a nuisance, which is
why -Wall does not request these warnings.

TABLE 5-9: WARNING/ERROR OPTIONS NOT IMPLIED BY -WALL (CONTINUED)

Option Definition
DS50002071G-page 116 2012-2018 Microchip Technology Inc.

Compiler Command-Line Driver
5.7.4.3 THE -W OPTION

Use the -W command line option to print extra warning messages for these events:

• A nonvolatile automatic variable might be changed by a call to longjmp. These
warnings are possible only in optimizing compilation. The compiler sees only the
calls to setjmp. It cannot know where longjmp will be called; in fact, a signal
handler could call it at any point in the code. As a result, a warning may be gener-
ated even when there is in fact no problem, because longjmp cannot in fact be
called at the place that would cause a problem.

• A function could exit both via return value; and return;. Completing the
function body without passing any return statement is treated as return;.

• An expression-statement or the left-hand side of a comma expression contains no
side effects. To suppress the warning, cast the unused expression to void. For
example, an expression such as x[i,j] will cause a warning, but
x[(void)i,j] will not.

• An unsigned value is compared against zero with < or <=.

• A comparison like x<=y<=z appears; this is equivalent to
(x<=y ? 1 : 0) <= z, which is a different interpretation from that of ordinary
mathematical notation.

• Storage-class specifiers like static are not the first things in a declaration.
According to the C Standard, this usage is obsolescent.

• If -Wall or -Wunused is also specified, warn about unused arguments.

• A comparison between signed and unsigned values could produce an incorrect
result when the signed value is converted to unsigned. (But don’t warn if
-Wno-sign-compare is also specified.)

• An aggregate has a partly bracketed initializer. For example, the following code
would evoke such a warning, because braces are missing around the initializer for
x.h:

struct s { int f, g; };
struct t { struct s h; int i; };
struct t x = { 1, 2, 3 };

• An aggregate has an initializer that does not initialize all members. For example,
the following code would cause such a warning, because x.h would be implicitly
initialized to zero:

struct s { int f, g, h; };
struct s x = { 3, 4 };
 2012-2018 Microchip Technology Inc. DS50002071G-page 117

MPLAB® XC16 C Compiler User’s Guide
5.7.5 Options for Debugging

The following options are used for debugging.

5.7.6 Options for Controlling Optimization

The following options control compiler optimizations. Optimization levels available depend on the compiler
license (see Chapter 18. “Optimizations.”).

TABLE 5-10: DEBUGGING OPTIONS

Option Definition

-g Produce debugging information.
The compiler supports the use of -g with -O making it possible to debug optimized code. The short-
cuts taken by optimized code may occasionally produce surprising results:
• Some declared variables may not exist at all;
• Flow of control may briefly move unexpectedly;
• Some statements may not be executed because they compute constant results or their values

were already at hand;
• Some statements may execute in different places because they were moved out of loops.
Nevertheless it proves possible to debug optimized output. This makes it reasonable to use the opti-
mizer for programs that might have bugs.

-Q Makes the compiler print out each function name as it is compiled, and print some statistics about
each pass when it finishes.

-save-temps Don’t delete intermediate files. Place them in the current directory and name them based on the
source file. Thus, compiling foo.c with -c -save-temps would produce the following files:
foo.i (preprocessed file)
foo.p (pre procedure abstraction assembly language file)
foo.s (assembly language file)
foo.o (object file)

TABLE 5-11: GENERAL OPTIMIZATION OPTIONS

Option License Definition

-O0 All Do not optimize. (This is the default.)
Without -O, the compiler’s goal is to reduce the cost of compilation and to make debugging
produce the expected results. Statements are independent: if you stop the program with a
breakpoint between statements, you can then assign a new value to any variable or change
the program counter to any other statement in the function and get exactly the results you
would expect from the source code.
The compiler only allocates variables declared register in registers.

-O
-O1

All Optimize for both speed and size. Optimizing compilation takes somewhat longer, and a lot
more host memory for a large function. With -O, the compiler tries to reduce code size and
execution time. The compiler turns on -fthread-jumps and -fdefer-pop and turns on
-fomit-frame-pointer.

-O2 PRO Optimize more for speed. -O2 turns on all optional optimizations except for loop unrolling
(-funroll-loops), function inlining (-finline-functions), and strict aliasing optimiza-
tions (-fstrict-aliasing). It also turns on Frame Pointer elimination
(-fomit-frame-pointer). As compared to -O, this option increases both compilation time
and the performance of the generated code.

-O3 PRO Optimize even more for speed (superset of -O2). -O3 turns on all optimizations specified by
-O2 and also turns on the inline-functions option.

-Os PRO Optimize even more for size (superset of -O2). -Os enables all -O2 optimizations that do not
typically increase code size. It also performs further optimizations designed to reduce code
size.
DS50002071G-page 118 2012-2018 Microchip Technology Inc.

Compiler Command-Line Driver
5.7.6.1 OPTIONS FOR SPECIFIC OPTIMIZATION CONTROL

The following options control specific optimizations. The -O2 option turns on all of these optimizations
except -funroll-loops, -funroll-all-loops and -fstrict-aliasing.

You can use the following flags in the rare cases when “fine-tuning” of optimizations to be performed is
desired.

TABLE 5-12: SPECIFIC OPTIMIZATION OPTIONS

Option Definition

-falign-functions
-falign-functions=n

Align the start of functions to the next power-of-two greater than n, skipping up to n
bytes. For instance, -falign-functions=32 aligns functions to the next 32-byte
boundary, but -falign-functions=24 would align to the next 32-byte boundary only
if this can be done by skipping 23 bytes or less.
-fno-align-functions and -falign-functions=1 are equivalent and mean that
functions will not be aligned.
The assembler only supports this flag when n is a power of two; so n is rounded up. If n
is not specified, use a machine-dependent default.

-falign-labels
-falign-labels=n

Align all branch targets to a power-of-two boundary, skipping up to n bytes like
-falign-functions. This option can easily make code slower, because it must insert
dummy operations for when the branch target is reached in the usual flow of the code.
If -falign-loops or -falign-jumps are applicable and are greater than this value,
then their values are used instead.
If n is not specified, use a machine-dependent default which is very likely to be 1, mean-
ing no alignment.

-falign-loops
-falign-loops=n

Align loops to a power-of-two boundary, skipping up to n bytes like -falign-func-
tions. The hope is that the loop will be executed many times, which will make up for
any execution of the dummy operations.
If n is not specified, use a machine-dependent default.

-fcaller-saves Enable values to be allocated in registers that will be clobbered by function calls, by
emitting extra instructions to save and restore the registers around such calls. Such
allocation is done only when it seems to result in better code than would otherwise be
produced.

-fcse-follow-jumps In common subexpression elimination, scan through jump instructions when the target of
the jump is not reached by any other path. For example, when CSE encounters an if
statement with an else clause, CSE will follow the jump when the condition tested is
false.

-fcse-skip-blocks This is similar to -fcse-follow-jumps, but causes CSE to follow jumps which condi-
tionally skip over blocks. When CSE encounters a simple if statement with no else
clause, -fcse-skip-blocks causes CSE to follow the jump around the body of the
if.

-fexpensive-
 optimizations

Perform a number of minor optimizations that are relatively expensive.

-ffunction-sections
-fdata-sections

Place each function or data item into its own section in the output file. The name of the
function or the name of the data item determines the section’s name in the output file.
Only use these options when there are significant benefits for doing so. When you spec-
ify these options, the assembler and linker may create larger object and executable files
and will also be slower.
See also Section 5.7.6.2 “The -ffunction-sections Option.”

-fgcse Perform a global common subexpression elimination pass. This pass also performs
global constant and copy propagation.

-fgcse-lm When -fgcse-lm is enabled, global common subexpression elimination will attempt to
move loads which are only killed by stores into themselves. This allows a loop containing
a load/store sequence to be changed to a load outside the loop, and a copy/store within
the loop.
 2012-2018 Microchip Technology Inc. DS50002071G-page 119

MPLAB® XC16 C Compiler User’s Guide
-fgcse-sm When -fgcse-sm is enabled, a store motion pass is run after global common subex-
pression elimination. This pass will attempt to move stores out of loops. When used in
conjunction with -fgcse-lm, loops containing a load/store sequence can be changed to
a load before the loop and a store after the loop.

-fno-defer-pop Always pop the arguments to each function call as soon as that function returns. The
compiler normally lets arguments accumulate on the stack for several function calls and
pops them all at once.

-fno-peephole
-fno-peephole2

Disable machine specific peephole optimizations. Peephole optimizations occur at vari-
ous points during the compilation. -fno-peephole disables peephole optimization on
machine instructions, while -fno-peephole2 disables high level peephole optimiza-
tions. To disable peephole entirely, use both options.

-foptimize-
 register-move
-fregmove

Attempt to reassign register numbers in move instructions and as operands of other
simple instructions in order to maximize the amount of register tying.
-fregmove and -foptimize-register-moves are the same optimization.

-frename-registers Attempt to avoid false dependencies in scheduled code by making use of registers left
over after register allocation. This optimization will most benefit processors with lots of
registers. It can, however, make debugging impossible, since variables will no longer
stay in a “home register”.

-frerun-cse-after-
 loop

Rerun common subexpression elimination after loop optimizations has been performed.

-frerun-loop-opt Run the loop optimizer twice.

-fschedule-insns Attempt to reorder instructions to eliminate Read-After-Write stalls (see your device
Family Reference Manual (FRM) for more details). Typically improves performance with
no impact on code size.

-fschedule-insns2 Similar to -fschedule-insns, but requests an additional pass of instruction
scheduling after register allocation has been done.

-fstrength-reduce Perform the optimizations of loop strength reduction and elimination of iteration
variables.

TABLE 5-12: SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)

Option Definition
DS50002071G-page 120 2012-2018 Microchip Technology Inc.

Compiler Command-Line Driver
-fstrict-aliasing Allows the compiler to assume the strictest aliasing rules applicable to the language
being compiled. For C, this
activates optimizations based on the type of expressions. In particular, an object of one
type is assumed never to reside at the same address as an object of a different type,
unless the types are almost the same. For example, an unsigned int can alias an
int, but not a void* or a double. A character type may alias any other type.
Pay special attention to code like this:
union a_union {
 int i;
 double d;
};

int f() {
 union a_union t;
 t.d = 3.0;
 return t.i;
}
The practice of reading from a different union member than the one most recently written
to (called “type-punning”) is common. Even with -fstrict-aliasing, type-punning is
allowed, provided the memory is accessed through the union type. So the code above
will work as expected, but the following code might not:
int f() {
 a_union t;
 int* ip;
 t.d = 3.0;
 ip = &t.i;
 return *ip;
}

-fthread-jumps Perform optimizations where a check is made to see if a jump branches to a location
where another comparison subsumed by the first is found. If so, the first branch is redi-
rected to either the destination of the second branch or a point immediately following it,
depending on whether the condition is known to be true or false.

-funroll-loops Perform the optimization of loop unrolling. This is only done for loops whose number of
iterations can be determined at compile time or run time. -funroll-loops implies both
-fstrength-reduce and -frerun-cse-after-loop.

-funroll-all-loops Perform the optimization of loop unrolling. This is done for all loops and usually makes
programs run more slowly. -funroll-all-loops implies -fstrength-reduce, as
well as -frerun-cse-after-loop.

TABLE 5-12: SPECIFIC OPTIMIZATION OPTIONS (CONTINUED)

Option Definition
 2012-2018 Microchip Technology Inc. DS50002071G-page 121

MPLAB® XC16 C Compiler User’s Guide
5.7.6.2 THE -ffunction-sections OPTION

The -ffunction-sections command-line option will try and put all functions into its own section.
However, there are many conditions that can effect what exactly this means. Here is a summary:

• Normal (non interrupt) functions will have the current section name and a "." prepended to them, for
example:

void foo() {}
will be placed into section .text.foo (the default code section name is .text).

• The default section name can be modified with the -mtext option. If this option has been used, then
current section name will be changed. For example, if -mtext=mytext is specified, then the above
function will be placed into mytext.foo.

• If the function has a section attribute, then it will be placed into that named section without any
adulteration. Therefore,

void __attribute__((section("mytext"))) foo() {}
will always be placed into the section mytext regardless of whether or not -ffunction-sections
is specified.

• Interrupt functions are normally placed into a special section with the name .isr prepended to the
normal section name (as above). Therefore if the current section name is .text (the default), then the
ISR is placed into .isr.text.function_name.

If the -mtext is used to change the name of the default section name, then this will be substituted
instead of .text. However, if a named section is used with a section attribute, .isr will still be
prepended to the section name.

The .isr is prepended to allow the --gc-sections option to not throw away interrupt functions.
These must be kept.
DS50002071G-page 122 2012-2018 Microchip Technology Inc.

Compiler Command-Line Driver
5.7.6.3 OPTIONS THAT SPECIFY MACHINE-INDEPENDENT FLAGS

Options of the form -fflag specify machine-independent flags. Most flags have both positive and negative
forms; the negative form of -ffoo would be -fno-foo. In the table below, only one of the forms is listed
(the one that is not the default.)

TABLE 5-13: MACHINE-INDEPENDENT OPTIMIZATION OPTIONS

Option Definition

-finline-functions Integrate all simple functions into their callers. The compiler heuristically decides
which functions are simple enough to be worth integrating in this way. If all calls to
a given function are integrated and the function is declared static, then the
function is normally not output as assembler code in its own right.

-finline-limit=n By default, the compiler limits the size of functions that can be inlined. This flag
allows the control of this limit for functions that are explicitly marked as inline (i.e.,
marked with the inline keyword). n is the size of functions that can be inlined in
number of pseudo instructions (not counting parameter handling). The default
value of n is 10000. Increasing this value can result in more inlined code at the
cost of compilation time and memory consumption.
Decreasing usually makes the compilation faster and less code will be inlined
(which presumably means slower programs). This option is particularly useful for
programs that use inlining.

Note: Pseudo instruction represents, in this particular context, an abstract mea-
surement of function’s size. In no way does it represent a count of assembly
instructions and as such, its exact meaning might change from one release of the
compiler to an another.

-fkeep-inline-functions Even if all calls to a given function are integrated, and the function is declared
static, output a separate run time callable version of the function. This switch
does not affect extern inline functions.

-fkeep-static-consts Emit variables declared static const when optimization isn’t turned on, even if the
variables aren’t referenced.
The compiler enables this option by default. If you want to force the compiler to
check if the variable was referenced, regardless of whether or not optimization is
turned on, use the -fno-keep-static-consts option.

-fno-function-cse Do not put function addresses in registers; make each instruction that calls a
constant function contain the function’s address explicitly.
This option results in less efficient code, but some strange hacks that alter the
assembler output may be confused by the optimizations performed when this
option is not used.

-fno-inline Do not pay attention to the inline keyword. Normally this option is used to keep
the compiler from expanding any functions inline. If optimization is not enabled,
no functions can be expanded inline.

-fomit-frame-pointer Do not keep the Frame Pointer in a register for functions that don’t need one. This
avoids the instructions to save, set up and restore Frame Pointers; it also makes
an extra register available in many functions.

-foptimize-sibling-calls Optimize sibling and tail recursive calls.
 2012-2018 Microchip Technology Inc. DS50002071G-page 123

MPLAB® XC16 C Compiler User’s Guide
5.7.7 Options for Controlling the Preprocessor

The following options control the compiler preprocessor.

TABLE 5-14: PREPROCESSOR OPTIONS

Option Definition

-Aquestion (answer) Assert the answer answer for question question, in case it is tested with a prepro-
cessing conditional such as #if #question(answer). -A- disables the standard
assertions that normally describe the target machine.
For example, the function prototype for main might be declared as follows:
#if #environ(freestanding)
int main(void);
#else
int main(int argc, char *argv[]);
#endif
A -A command-line option could then be used to select between the two prototypes.
For example, to select the first of the two, the following command-line option could be
used:
-Aenviron(freestanding)

-A -predicate =answer Cancel an assertion with the predicate predicate and answer answer.

-A predicate =answer Make an assertion with the predicate predicate and answer answer. This form is
preferred to the older form -A predicate(answer), which is still supported,
because it does not use shell special characters.

-C Tell the preprocessor not to discard comments. Used with the -E option.

-dD Tell the preprocessor to not remove macro definitions into the output, in their proper
sequence.

-Dmacro Define macro macro with the string 1 as its definition.

-Dmacro=defn Define macro macro as defn. All instances of -D on the command line are processed
before any -U options.

-dM Tell the preprocessor to output only a list of the macro definitions that are in effect at
the end of preprocessing. Used with the -E option.

-dN Like -dD except that the macro arguments and contents are omitted. Only #define
name is included in the output.

-fno-show-column Do not print column numbers in diagnostics. This may be necessary if diagnostics are
being scanned by a program that does not understand the column numbers, such as
dejagnu.

-H Print the name of each header file used, in addition to other normal activities.

-iquote, -I- Any directories you specify with -I options before the -iquote options are searched
only for the case of #include "file"; they are not searched for #include
<file>.
If additional directories are specified with -I options after the -iquote, these directo-
ries are searched for all #include directives (ordinarily all -I directories are used this
way).
In addition, the iquote option inhibits the use of the current directory (where the cur-
rent input file came from) as the first search directory for #include "file". There is
no way to override this effect of iquote. With -I. you can specify searching the direc-
tory that was current when the compiler was invoked. That is not exactly the same as
what the preprocessor does by default, but it is often satisfactory.
iquote does not inhibit the use of the standard system directories for header files.
Thus, iquote and -nostdinc are independent.

-Idir Add the directory dir to the head of the list of directories to be searched for header
files. This can be used to override a system header file, substituting your own version,
since these directories are searched before the system header file directories. If you
use more than one -I option, the directories are scanned in left-to-right order; the
standard system directories come after.
DS50002071G-page 124 2012-2018 Microchip Technology Inc.

Compiler Command-Line Driver
-idirafter dir Add the directory dir to the second include path. The directories on the second
include path are searched when a header file is not found in any of the directories in
the main include path (the directory that -I adds within).

-imacros file Process file as input, discarding the resulting output, before processing the regular
input file. Because the output generated from the file is discarded, the only effect of
-imacros file is to make the macros defined in file available for use in the main
input.
Any -D and -U options on the command line are always processed before -imacros
file, regardless of the order in which they are written. All the -include and
 -imacros options are processed in the order in which they are written.

-include file Process file as input before processing the regular input file. In effect, the contents of
file are compiled first. Any -D and -U options on the command line are always pro-
cessed before -include file, regardless of the order in which they are written. All
the -include and -imacros options are processed in the order in which they are
written.

-iprefix prefix Specify prefix as the prefix for subsequent -iwithprefix options.

-isystem dir Add a directory to the beginning of the second include path, marking it as a system
directory, so that it gets the same special treatment as is applied to the standard sys-
tem directories.

-iwithprefix dir Add a directory to the second include path. The directory’s name is made by concate-
nating prefix and dir, where prefix was specified previously with -iprefix. If a prefix
has not yet been specified, the directory containing the installed passes of the compiler
is used as the default.

-iwithprefixbefore
dir

Add a directory to the main include path. The directory’s name is made by concatenat-
ing prefix and dir, as in the case of -iwithprefix.

-M Tell the preprocessor to output a rule suitable for make describing the dependencies of
each object file. For each source file, the preprocessor outputs one make-rule whose
target is the object file name for that source file and whose dependencies are all the
#include header files it uses. This rule may be a single line or may be continued with
\-newline if it is long. The list of rules is printed on standard output instead of the
preprocessed C program.
-M implies -E see Section 5.7.2 “Options for Controlling the Kind of Output.”

-MD Like -M but the dependency information is written to a file and compilation continues.
The file containing the dependency information is given the same name as the source
file with a .d extension.

-MF file When used with -M or -MM, specifies a file in which to write the dependencies. If no
-MF switch is given, the preprocessor sends the rules to the same place it would have
sent preprocessed output.
When used with the driver options, -MD or -MMD, -MF, overrides the default
dependency output file.

-MG Treat missing header files as generated files and assume they live in the same direc-
tory as the source file. If -MG is specified, then either -M or -MM must also be specified.
-MG is not supported with -MD or -MMD.

-MM Like -M but the output mentions only the user header files included with #include
“file”. System header files included with #include <file> are omitted.

-MMD Like -MD except mention only user header files, not system header files.

-MP This option instructs CPP to add a phony target for each dependency other than the
main file, causing each to depend on nothing. These dummy rules work around errors
make gives if you remove header files without updating the make-file to match.
This is typical output:
test.o: test.c test.h
test.h:

TABLE 5-14: PREPROCESSOR OPTIONS (CONTINUED)

Option Definition
 2012-2018 Microchip Technology Inc. DS50002071G-page 125

MPLAB® XC16 C Compiler User’s Guide
-MQ Same as -MT, but it quotes any characters which are special to make.
-MQ '$(objpfx)foo.o' gives $$(objpfx)foo.o: foo.c
The default target is automatically quoted, as if it were given with -MQ.

-MT target Change the target of the rule emitted by dependency generation. By default, CPP
takes the name of the main input file, including any path, deletes any file suffix such as
.c, and appends the platform’s usual object suffix. The result is the target.
An -MT option will set the target to be exactly the string you specify. If you want multiple
targets, you can specify them as a single argument to -MT, or use multiple -MT options.
For example:
-MT '$(objpfx)foo.o' might give $(objpfx)foo.o: foo.c

-nostdinc Do not search the standard system directories for header files. Only the directories you
have specified with -I options (and the current directory, if appropriate) are searched.
See Section 5.7.10 “Options for Directory Search.” for information on -I.
By using both -nostdinc and -I-, the include-file search path can be limited to only
those directories explicitly specified.

-P Tell the preprocessor not to generate #line directives. Used with the -E option. See
Section 5.7.2 “Options for Controlling the Kind of Output.”

-trigraphs Support ANSI C trigraphs. The -ansi option also has this effect.

-Umacro Undefine macro macro. -U options are evaluated after all -D options, but before any
-include and -imacros options.

-undef Do not predefine any nonstandard macros (including architecture flags).

TABLE 5-14: PREPROCESSOR OPTIONS (CONTINUED)

Option Definition
DS50002071G-page 126 2012-2018 Microchip Technology Inc.

Compiler Command-Line Driver
5.7.8 Options for Assembling

The following options control assembler operations. For more on available options, see the MPLAB® XC16
Assembler, Linker and Utilities User’s Guide (DS50002106).

5.7.9 Options for Linking

If any of the options -c, -S or -E are used, the linker is not run and object file names should not be used
as arguments. For more on available options, see the MPLAB® XC16 Assembler, Linker and Utilities User’s
Guide (DS50002106).

TABLE 5-15: ASSEMBLY OPTIONS

Option Definition

-Wa,option Pass option as an option to the assembler. If option contains commas, it is split into multiple
options at the commas.
For example, to generate an assembly list file, use -Wa,-a.

TABLE 5-16: LINKING OPTIONS

Option Definition

--fill=options Fill unused program memory. The format is:
--fill=[wn:]expression[@address[:end_address] | unused]

address and end_address will specify the range of program memory addresses to fill. If
end_address is not provided then the expression will be written to the specific memory
location at address address. The optional literal value unused may be specified to indicate
that all unused memory will be filled. If none of the location parameters are provided, all unused
memory will be filled. expression will describe how to fill the specified memory. The following
options are available:
A single value
 xc16-ld --fill=0x12345678@unused
Range of values
 xc16-ld --fill=1,2,3,4,097@0x9d000650:0x9d000750
An incrementing value
 xc16-ld --fill=7+=911@unused

By default, the linker will fill using data that is instruction-word length. For 16-bit devices, the
default fill width is 24 bits. However, you may specify the value width using [wn:], where n is
the fill value's width and n belongs to [1, 3].

Multiple fill options may be specified on the command line; the linker will always process fill
options at specific locations first.

--gc-sections Remove dead functions from code at link time.
Support is for ELF projects only. In order to make the best use of this feature, add the
-ffunction-sections option to the compiler command line.

-Ldir Add directory dir to the list of directories to be searched for libraries specified by the com-
mand-line option -l.

-legacy-libc Use legacy include files and libraries (v3.24 and before).
The format of include file and libraries changed in v3.25 to match HI-TECH C compiler format.
 2012-2018 Microchip Technology Inc. DS50002071G-page 127

MPLAB® XC16 C Compiler User’s Guide
-llibrary Search the library named library when linking.
The linker searches a standard list of directories for the library, which is actually a file named
liblibrary.a. The linker then uses this file as if it had been specified precisely by name.
It makes a difference where in the command you write this option; the linker processes libraries
and object files in the order they are specified. Thus, foo.o -lz bar.o searches library z
after file foo.o but before bar.o. If bar.o refers to functions in libz.a, those functions may
not be loaded.
The directories searched include several standard system directories, plus any that you specify
with -L.
Normally the files found this way are library files (archive files whose members are object files).
The linker handles an archive file by scanning through it for members which define symbols
that have so far been referenced but not defined. But if the file that is found is an ordinary object
file, it is linked in the usual fashion. The only difference between using an -l option (e.g.,
-lmylib) and specifying a file name (e.g., libmylib.a) is that -l searches several directo-
ries, as specified.
By default the linker is directed to search:
<install-path>\lib
for libraries specified with the -l option.
This behavior can be overridden using the environment variables defined in
Section 19.4 “Predefined Macro Names.”

-nodefaultlibs Do not use the standard system libraries when linking. Only the libraries you specify will be
passed to the linker. The compiler may generate calls to memcmp, memset and memcpy. These
entries are usually resolved by entries in the standard compiler libraries. These entry points
should be supplied through some other mechanism when this option is specified.

-nostdlib Do not use the standard system startup files or libraries when linking. No startup files and only
the libraries you specify will be passed to the linker.
The compiler may generate calls to memcmp, memset and memcpy. These entries are usually
resolved by entries in standard compiler libraries. These entry points should be supplied
through some other mechanism when this option is specified.

-s Remove all symbol table and relocation information from the executable.

-T script Specify the linker script file, script, to be used at link time. This option is translated into the
equivalent -T linker option.

-u symbol Pretend symbol is undefined to force linking of library modules to define the symbol. It is legiti-
mate to use -u multiple times with different symbols to force loading of additional library
modules.

-Wl,option Pass option as an option to the linker. If option contains commas, it is split into multiple
options at the commas.
For example, to generate a map file, use -W1, -Map=Project.map.

-Xlinker option Pass option as an option to the linker. You can use this to supply system-specific linker
options that the compiler does not know how to recognize.

TABLE 5-16: LINKING OPTIONS (CONTINUED)

Option Definition
DS50002071G-page 128 2012-2018 Microchip Technology Inc.

Compiler Command-Line Driver
5.7.10 Options for Directory Search

The following options specify to the compiler where to find directories and files to search.

5.7.11 Options for Code Generation Conventions

Options of the form -fflag specify machine-independent flags. Most flags have both positive and negative
forms; the negative form of -ffoo would be -fno-foo. In the table below, only one of the forms is listed
(the one that is not the default.)

TABLE 5-17: DIRECTORY SEARCH OPTIONS

Option Definition

-specs=file Process file after the compiler reads in the standard specs file, in order to override the defaults
that the xc16-gcc driver program uses when determining what switches to pass to xc16-cc1,
xc16-as, xc16-ld, etc. More than one -specs=file can be specified on the command line,
and they are processed in order, from left to right.

TABLE 5-18: CODE GENERATION CONVENTION OPTIONS

Option Definition

-fargument-alias
-fargument-noalias
-fargument-
 noalias-global

Specify the possible relationships among parameters and between parameters and global
data.
-fargument-alias specifies that arguments (parameters) may alias each other and
may alias global storage.
-fargument-noalias specifies that arguments do not alias each other, but may alias
global storage.
-fargument-noalias-global specifies that arguments do not alias each other and
do not alias global storage.
Each language will automatically use whatever option is required by the language
standard. You should not need to use these options yourself.

-fcall-saved-reg Treat the register named reg as an allocatable register saved by functions. It may be allo-
cated even for temporaries or variables that live across a call. Functions compiled this
way will save and restore the register reg if they use it.
It is an error to used this flag with the Frame Pointer or Stack Pointer. Use of this flag for
other registers that have fixed pervasive roles in the machine’s execution model will pro-
duce disastrous results.
A different sort of disaster will result from the use of this flag for a register in which func-
tion values may be returned.
This flag should be used consistently through all modules.

-fcall-used-reg Treat the register named reg as an allocatable register that is clobbered by function calls.
It may be allocated for temporaries or variables that do not live across a call. Functions
compiled this way will not save and restore the register reg.
It is an error to use this flag with the Frame Pointer or Stack Pointer. Use of this flag for
other registers that have fixed pervasive roles in the machine’s execution model will
produce disastrous results.
This flag should be used consistently through all modules.

-ffixed-reg Treat the register named reg as a fixed register; generated code should never refer to it
(except perhaps as a Stack Pointer, Frame Pointer or in some other fixed role).
reg must be the name of a register, e.g., -ffixed-w3.

-fno-ident Ignore the #ident directive.

-fpack-struct Pack all structure members together without holes. Usually you would not want to use this
option, since it makes the code sub-optimal, and the offsets of structure members won’t
agree with system libraries.
The dsPIC® DSC device requires that words be aligned on even byte boundaries; so,
care must be taken when using the packed attribute to avoid run time addressing errors.
 2012-2018 Microchip Technology Inc. DS50002071G-page 129

MPLAB® XC16 C Compiler User’s Guide
-fpcc-struct-
 return

Return short struct and union values in memory like longer ones, rather than in regis-
ters. This convention is less efficient, but it has the advantage of allowing capability
between the 16-bit compiler compiled files and files compiled with other compilers.
Short structures and unions are those whose size and alignment match that of an integer
type.

-fno-short-double By default, the compiler uses a double type equivalent to float. This option makes
double equivalent to long double. Mixing this option across modules can have unex-
pected results if modules share double data either directly through argument passage or
indirectly through shared buffer space. Libraries provided with the product function with
either switch setting.

-fshort-enums Allocate to an enum type only as many bytes as it needs for the declared range of possi-
ble values. Specifically, the enum type will be equivalent to the smallest integer type which
has enough room.

-fverbose-asm
-fno-verbose-asm

Put extra commentary information in the generated assembly code to make it more
readable.
-fno-verbose-asm, the default, causes the extra information to be omitted and is
useful when comparing two assembler files.

TABLE 5-18: CODE GENERATION CONVENTION OPTIONS (CONTINUED)

Option Definition
DS50002071G-page 130 2012-2018 Microchip Technology Inc.

Compiler Command-Line Driver
5.7.12 Miscellaneous Options

The following options do not fit in any of the previous categories.

TABLE 5-19: MISCELLANEOUS OPTIONS

Option Definition

-fnofallback By default, the tool will fall back to a free license when a network, or other license, is unavail-
able. Specifying this option will prevent fallback and cause the compilation to fail instead.

-v Print the commands executed during each stage of compilation.

-x You can specify the input language explicitly with the -x option:
-x language
Specify explicitly the language for the following input files (rather than
letting the compiler choose a default based on the file name suffix). This option applies to all
following input files until the next -x option.
The following values are supported by the compiler:
c c-header cpp-output
assembler assembler-with-cpp

-x none
Turn off any specification of a language, so that subsequent files are handled according to
their file name suffixes. This is the default behavior but is needed if another -x option has
been used.
For example:
xc16-gcc -x assembler foo.asm bar.asm -x none main.c mabonga.s

Without the -x none, the compiler will assume all the input files are for the assembler.
 2012-2018 Microchip Technology Inc. DS50002071G-page 131

MPLAB® XC16 C Compiler User’s Guide
5.8 MPLAB X IDE TOOLCHAIN EQUIVALENTS

For information on related compiler options in MPLAB X IDE, see Chapter 4. “XC16
Toolchain and MPLAB X IDE.”
DS50002071G-page 132 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 6. Device-Related Features
6.1 INTRODUCTION

The MPLAB XC16 C Compiler provides some features that are purely device-related.

• Device Support

• Device Header Files

• Stack

• Configuration Bit Access

• Using SFRs

• Bit-Reversed and Modulo Addressing

• Using EDS

6.2 DEVICE SUPPORT

As discussed in Chapter 1. “Compiler Overview,” the compiler supports all Microchip
16-bit devices; dsPIC30/33 digital signal controls (DSCs) and PIC24 microcontrollers
(MCUs).

To determine the device support for your version of the compiler, consult the file
Readme_XC16.html in the docs subfolder of the compiler installation folder. For
example:

C:\Program Files (x86)\Microchip\xc16\v1.10\docs\Readme_XC16.html

6.3 DEVICE HEADER FILES

One header file that is typically included in each C source file you will write is xc.h, a
generic header file that will include other device- and architecture-specific header files
when you build your project.

Inclusion of this file will allow access to SFRs via special variables, as well as macros
which allow special memory access or inclusion of special instructions.

Avoid including chip-specific header files in your code, as this reduces portability. How-
ever, device-specific compiler header files are stored in the support/family/h
directory for reference.

For information about assembly include files (*.inc), see the MPLAB® XC16
Assembler, Linker and Utilities User’s Guide (DS50002106).
 2012-2018 Microchip Technology Inc. DS50002071G-page 133

Device-Related Features
6.3.1 Register Definition Files

The processor header files described in Section 6.3 “Device Header Files.” name all
SFRs for each part, but they do not define the addresses of the SFRs. A separate set
of device-specific linker script files, one per part, is distributed in the
support/family/gld directory. These linker script files define the SFR addresses.
To use one of these files, specify the linker command-line option:

-T p30fxxxx.gld

where xxxx corresponds to the device part number.

For example, assuming that there is a file named app2010.c that contains an appli-
cation for the dsPIC30F2010 part, then it may be compiled and linked using the
following command line:

xc16-gcc -mcpu=30f2010 -o app2010.out -T p30f2010.gld app2010.c

The -o command-line option names the output executable file, and the -T option gives
the linker script name for the dsPIC30F2010 part. If p30f2010.gld is not found in the
current directory, the linker searches in its known library paths. The default search path
includes all locations of preinstalled libraries and linker scripts.

You should copy the appropriate linker script file (supplied with the compiler) into your
project directory before any project-specific modifications are made.

6.3.2 Device Support Information

The following definitions are provided in each device header file.

6.3.3 Compile Time Memory Information

Each device header file incorporates macros to help identify memory sizes. For each
memory region (RAM, Flash, vector table, configuration words, etc.) the header file will
define two symbols: a base address and a length in bytes.

The symbol name is formed from the following template: __<region_id>_BASE or
__<region_id>_LENGTH. These symbols may be used anywhere that
preprocessing symbols are used.

For example:

 #if __DATA_LENGTH < 0x1000
 #error Please use a device with at least 4K of data memory
 #endif

Item Description

__XC16_PART_SUPPORT_
VERSION

A manifest constant representing the compiler release that
this part-support was released with.

__XC16_PART_SUPPORT_
UPDATE

A manifest constant representing the update increment of the
part-support data.

__write_to_IEC(X) A macro that wraps the expression X with an appropriate num-
ber of nop instructions to ensure that the write to the IEC reg-
ister has taken effect before the program executes. For
example:
 __write_to_IEC(IEC0bits.T1IE = 0);
will not progress until the device has disabled the interrupt
enable bit for T1 (Timer1).
 2012-2018 Microchip Technology Inc. DS50002071G-page 134

MPLAB® XC16 C Compiler User’s Guide
6.4 STACK

The 16-bit devices use what is referred to in this user’s guide as a “software stack.” This
is the typical stack arrangement employed by most computers and is ordinary data
memory accessed by a push-and-pop type instruction and a stack pointer register. The
term “hardware stack” is used to describe the stack employed by Microchip 8-bit
devices, which is only used for storing function return addresses.

The 16-bit devices dedicate register W15 for use as a software Stack Pointer. All
processor stack operations, including function calls, interrupts and exceptions, use the
software stack. The stack grows upward, towards higher memory addresses.

The dsPIC DSC device also supports stack overflow detection. If the Stack Pointer
Limit register, SPLIM, is initialized, the device will test for overflow on all stack
operations. If an overflow should occur, the processor will initiate a stack error
exception. By default, this will result in a processor Reset. Applications may also install
a stack error exception handler by defining an interrupt function named _StackError.
See Chapter 14. “Interrupts,” for details.

The C run-time startup module initializes the Stack Pointer (W15) and the Stack Pointer
Limit register during the startup and initialization sequence. The initial values are
normally provided by the linker, which allocates the largest stack possible from unused
data memory. The location of the stack is reported in the link map output file.
Applications can ensure that at least a minimum-sized stack is available with the
--stack linker command-line option. See the MPLAB® XC16 Assembler, Linker and
Utilities User’s Guide (DS50002106) for details.

Alternatively, a stack of specific size may be allocated with a user-defined section from
an assembly source file. In the following example, 0x100 bytes of data memory are
reserved for the stack:

 .section *,data,stack
 .space 0x100

The linker will allocate an appropriately sized section and initialize __SP_init and
__SPLIM_init so that the run-time startup code can properly initialize the stack. Note
that since this is a normal assembly code section, attributes such as address may be
used to further define the stack. Please see the MPLAB® XC16 Assembler, Linker and
Utilities User’s Guide (DS50002106) for more information.
DS50002071G-page 135 2012-2018 Microchip Technology Inc.

Device-Related Features
6.5 CONFIGURATION BIT ACCESS

Microchip devices have several locations which contain the configuration bits or fuses.
These bits specify fundamental device operation, such as the oscillator mode, watch-
dog timer, programming mode and code protection. Failure to correctly set these bits
may result in code failure or a non-running device.

Configuration Settings may be made using the preprocessor directive #pragma
config and settings macros specified under the docs subdirectory of the compiler
install directory.

The directive format options are:

#pragma config setting = state|value
#pragma config register = value

where setting is a configuration setting descriptor (e.g., WDT), state is a descrip-
tive value (e.g., ON) and value is a numerical value. The register token may represent
a whole configuration word register, e.g., CONFIG1L.

A list of all available settings by device may be found from MPLAB X IDE, Dashboard
window, Compiler Help button or from the command-line under:

<MPLAB XC16 Installation folder>/vx.xx/docs/config_index.html
 2012-2018 Microchip Technology Inc. DS50002071G-page 136

MPLAB® XC16 C Compiler User’s Guide
6.6 USING SFRS

The Special Function Registers (SFRs) are registers which control aspects of the MCU
operation or that of peripheral modules on the device. These registers are device mem-
ory mapped, which means that they appear at, and can be accessed using, specific
addresses in the device’s data memory space. Individual bits within some registers
control independent features. Some registers are read-only; some are write-only. See
your device data sheet for more information.

Memory-mapped SFRs are accessed by special C variables that are placed at the
address of the register. These variables can be accessed like any ordinary C variable
so that no special syntax is required to access SFRs.

The SFR variable identifiers are predefined in header files and are accessible once you
have included the <xc.h> header file (see Section 6.3 “Device Header Files.”) into
your source code. Structures with bit-fields are also defined so you may access bits
within a register in your source code.

A linker script file for the appropriate device must be linked into your project to ensure
the SFR variable identifiers are linked to the correct address. MPLAB IDE will link in a
default linker script, but a linker script file must be explicitly specified if you are driving
the command-line toolchain. Linker scripts have a .gld extension (e.g.,
p30F6014.gld) and basic files are provided with the compiler.

The convention in the processor header files is that each SFR is named, using the
same name that appears in the data sheet for the part – for example, CORCON for the
Core Control register. If the register has individual bits that might be of interest, then
there will also be a structure defined for that SFR and the name of the structure will be
the same as the SFR name, with “bits” appended. For example, CORCONbits for the
Core Control register. The individual bits (or bit-fields) are named in the structure using
the names in the data sheet – for example PSV for the PSV bit of the CORCON
register.

Here is the complete definition of CORCON (subject to change):

/* CORCON: CPU Mode control Register */
extern volatile unsigned int CORCON __attribute__((__sfr__));
typedef struct tagCORCONBITS {
 unsigned IF :1; /* Integer/Fractional mode */
 unsigned RND :1; /* Rounding mode */
 unsigned PSV :1; /* Program Space Visibility enable */
 unsigned IPL3 :1;
 unsigned ACCSAT :1; /* Acc saturation mode */
 unsigned SATDW :1; /* Data space write saturation enable */
 unsigned SATB :1; /* Acc B saturation enable */
 unsigned SATA :1; /* Acc A saturation enable */
 unsigned DL :3; /* DO loop nesting level status */
 unsigned :4;
} CORCONBITS;
extern volatile CORCONBITS CORCONbits __attribute__((__sfr__));

See MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106) for
more information on using linker scripts.

Note: The symbols CORCON and CORCONbits refer to the same register and will
resolve to the same address at link time.
DS50002071G-page 137 2012-2018 Microchip Technology Inc.

Device-Related Features
For example, the following is a sample real-time clock. It uses an SFR, e.g., TMR1, as
well as bits within an SFR, e.g., T1CONbits.TCS. Descriptions for these SFRs are
found in the p30F6014.h file (this file will automatically be included by <xc.h> so you
do not need to include this into your source code). This file would be linked with the
device specific linker script which is p30F6014.gld.

EXAMPLE 6-1: SAMPLE REAL-TIME CLOCK

/*
** Sample Real Time Clock for dsPIC
**
** Uses Timer1, TCY clock timer mode
** and interrupt on period match
*/

#include <xc.h>

/* Timer1 period for 1 ms with FOSC = 20 MHz */
#define TMR1_PERIOD 0x1388

struct clockType
 {
 unsigned int timer; /* countdown timer, milliseconds */
 unsigned int ticks; /* absolute time, milliseconds */
 unsigned int seconds; /* absolute time, seconds */
 } volatile RTclock;

void reset_clock(void)
 {
 RTclock.timer = 0; /* clear software registers */
 RTclock.ticks = 0;
 RTclock.seconds = 0;

 TMR1 = 0; /* clear timer1 register */
 PR1 = TMR1_PERIOD; /* set period1 register */
 T1CONbits.TCS = 0; /* set internal clock source */
 IPC0bits.T1IP = 4; /* set priority level */
 IFS0bits.T1IF = 0; /* clear interrupt flag */
 IEC0bits.T1IE = 1; /* enable interrupts */

 SRbits.IPL = 3; /* enable CPU priority levels 4-7*/
 T1CONbits.TON = 1; /* start the timer*/
 }
void __attribute__((__interrupt__,__auto_psv__)) _T1Interrupt(void)
 { static int sticks=0;

 if (RTclock.timer > 0) /* if countdown timer is active */
 RTclock.timer -= 1; /* decrement it */
 RTclock.ticks++; /* increment ticks counter */
 if (sticks++ > 1000)
 { /* if time to rollover */
 sticks = 0; /* clear seconds ticks */
 RTclock.seconds++; /* and increment seconds */
 }

 IFS0bits.T1IF = 0; /* clear interrupt flag */
 return;
 }
 2012-2018 Microchip Technology Inc. DS50002071G-page 138

MPLAB® XC16 C Compiler User’s Guide
6.7 BIT-REVERSED AND MODULO ADDRESSING

Bit-reversed and modulo addressing is supported on all dsPIC DSC devices.

Bit-reversed addressing is used for simplifying and speeding-up the writes to X-space
data arrays in FFT (Fast Fourier Transform) algorithms. When enabled, pre-increment
or post-increment addressing modes will reverse the lower order address bits used by
instructions.

Modulo, or circular addressing, provides an automated means to support circular data
buffers using the dsPIC hardware. When used, software no longer needs to perform
data address boundary checks on arrays.

The compiler does not directly support the use of bit-reversed and modulo addressing;
that is, it cannot generate code from C source that assumes these addressing modes
are enabled when accessing memory. If either of these addressing modes are set up
on the target device, then it is the programmer’s responsibility to ensure that the com-
piler does not use those registers that are specified to use either modulo or bit-reversed
addressing as pointers. Particular care must be exercised if interrupts can occur while
one of these addressing modes is enabled.

It is possible to define arrays in C that will be suitably aligned in memory for modulo
addressing by hand-written assembly language functions. The aligned attribute may
be used to define arrays that are positioned for use as incrementing modulo buffers.
Initialization of the start and end addresses, as well as the registers that modulo
address is applied must be written by hand to match the array specification. The
reverse attribute may be used to define arrays that are positioned for use as decre-
menting modulo buffers. For more information on these attributes, see
Section 13.2.1 “Function Specifiers.” For more information on bit-reversed or modulo
addressing, see your device Family Reference Manual (FRM).
DS50002071G-page 139 2012-2018 Microchip Technology Inc.

Device-Related Features
6.8 USING EDS

EDS (Extended Data Space) is an architectural concept that allows the mapping of
extra RAM into the 16-bit data addressable area. This feature uses a paging scheme,
mapping in 32K pages into the address range from 0x8000 to 0xFFFF (bit 15 is set).
EDS is similar to PSV (Program Space Visibility) which all 16-bit devices support.

__eds__ is a compiler concept that allows this space to be used by either additional
RAM or by FLASH. This is an extension of the architectural PSV (Program Space Visis-
bility) window and compiler's __psv__/__prog__ interpretation. PSV only facilitates
the mapping of FLASH pages; EDS allows mapping RAM or Flash pages. __eds__
can be used on all 16-bit devices, even older devices that do not have any EDS mem-
ory. In this case, __eds__ can be used to access Flash.

__eds__, __psv__, and __prog__ are treated as address space qualifiers and
define an access method for the compiler. These words are also used inside an
address attribute to define permissible allocation.

__attribute__((space(psv))), or __attribute__((space(__psv__))),
describe to the language tool where an object may be placed. Access and allocation
are separated to allow access to be defined by the individual customer, if needed. Typ-
ically, an object allocated in a named address space would also be tagged with an
address space qualifier. Here are some examples:

__psv__ Tau object1 __attribute__((space(psv)));
__eds__ Tau object2 __attribute__((space(psv)));

object1 is allocated somewhere in PSV (Flash), and accessed through the compiler's
__psv__ mechanism; the compiler will manage the setting of the EDS page to access
the object. object2 is also allocated in PSV but accessed through the more general
__eds__ mechanism, also completely managed by the compiler.

Pointer declarations may also have address space qualifiers, but not be allocated in a
named address space. In this case, it would represent a normal data space pointer,
which is pointing to an object in one of the named address spaces:

__psv__ int *pointer_to_psv_int;
int * __psv__ psv_pointer_to_int __attribute__((space(psv)));

The way to decode these is to read outwards from the object name. The first defines
an object, in data space, that points to an object in psv space. The 2nd defines an
object that lives in psv space which points to an object in data space; this object needs
a space attribute to get located into an appropriate named address space.

See also Section 10.7 “Extended Data Space Access.”

6.8.1 Memory Models and Address Spaces

By default, the compiler uses the const-in-code memory model, which will allocate
const qualified objects into a single PSV window, limited to 32K in size. This window
will be the default page that is mapped into the EDS area in the address map. The com-
piler requires that this page always be available if it is setup. This is often referred to as
the auto PSV memory model because the compiler automatically manages the PSV.

Other objects can be explicitly placed into different areas of memory using a space
attribute, such as __attribute__((space(psv))) for a windowed Flash area or
__attribute__((space(eds))) for a RAM area in the EDS space. When there is
a need to nominate a Y memory space and have that be in EDS, use
__attribute__((space(eds))), which is equivalent to
__attribute__((eds)).
 2012-2018 Microchip Technology Inc. DS50002071G-page 140

MPLAB® XC16 C Compiler User’s Guide
When specifying an address space it is normal, but not required, to also use an address
space qualifier. Doing so will ask the compiler to manage the access to the named
address space for you, which will mean always maintaining the const-in-code page
access if it is enabled.

6.8.2 Optimizations

Using the EDS/PSV address space qualifiers may be expensive. If your application
footprint does not need to access these variables often, then it may be more efficient
to use the const-in-data memory model and manually place the less -often -accessed
data into a Flash space (using the named address attributes and qualifiers). This can
reduce the overhead by allowing the compiler to not force the EDS access to return to
a single page. This model does not preclude the use of an automatically managed PSV
space; using space(auto_psv) allows the programmer to nominate which const
variables go into this area.

By default the compiler will arrange to assert the const-in-code page at the start of an
interrupt service routine. If an ISR does not need to access const data, then specifying
__attribute__((no_auto_psv)) will let the compiler know that the ISR, or any
function it calls, does not use any auto PSV data.

The compiler also has an optimization setting that attempts to reduce the number of
page swaps; not as a cache, but modifications of the DSR/DSW/PSV Page SFR regis-
ter. This is a separate switch, -moptimize-page-setting, which can be applied at
any optimization level. Like many optimizations, it generally reduces the number page
setting operations which may reduce code-size and improve application performance.

6.8.3 C Library Function Extensions

Named address space qualifiers are not part of the definition for the standard C library.
In order to maintain C compliance, MPLAB XC16 adds extended versions of some
library functions instead of supporting a modified signature.

For example, it is not possible to pass an __eds__ char * ponter to a printf %s
argument.

MPLAB XC16 supports extended versions of memcpy, strcpy and strncpy standard
C functions. Please see the 16-Bit Language Tools Libraries Reference Manual
(DS0001456), “Functions for Specialized Copying and Initialization.”
DS50002071G-page 141 2012-2018 Microchip Technology Inc.

Device-Related Features
NOTES:
 2012-2018 Microchip Technology Inc. DS50002071G-page 142

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 7. Differences Between MPLAB XC16 and ANSI C
This compiler conforms to the ANSI X3.159-1989 Standard for programming lan-
guages. This is commonly called the C89 Standard. It is referred to as the ANSI C Stan-
dard in this manual. Some features from the later standard C99 are also supported.

• Divergence from the ANSI C Standard

• Extensions to the ANSI C Standard

• Implementation-Defined Behavior

7.1 DIVERGENCE FROM THE ANSI C STANDARD

There are no divergences from the ANSI C standard.

7.2 EXTENSIONS TO THE ANSI C STANDARD

The MPLAB XC16 C Compiler provides extensions to the ANSI C standard in these
areas: keywords and expressions.

7.2.1 Keyword Differences

The new keywords are part of the base GCC implementation and the discussions in the
referenced sections are based on the standard GCC documentation, tailored for the
specific syntax and semantics of the 16-bit compiler port of GCC.

• Specifying Attributes of Variables – Section 8.11 “Variable Attributes”

• Specifying Attributes of Functions – Section 13.2.1 “Function Specifiers”

• Inline Functions – Section 13.6 “Inline Functions”

• Variables in Specified Registers – Section 10.11 “Allocation of Variables to
Registers”

7.2.2 Expression Differences

Expression differences are:

Binary Constants – Section 8.8 “Literal Constant Types and Formats”

7.3 IMPLEMENTATION-DEFINED BEHAVIOR

Certain features of the ANSI C standard have implementation-defined behavior. This
means that the exact behavior of some C code can vary from compiler to compiler.

The exact behavior of the MPLAB XC16 C Compiler is detailed throughout this
documentation, and is fully summarized in Appendix A. “Implementation-Defined
Behavior.”
 2012-2018 Microchip Technology Inc. DS50002071G-page 143

Differences Between MPLAB XC16 and ANSI C
NOTES:
 2012-2018 Microchip Technology Inc. DS50002071G-page 144

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 8. Supported Data Types and Variables
8.1 INTRODUCTION

The MPLAB XC16 C Compiler supports a variety of data types and qualifiers (attri-
butes). These data types and variables are discussed here. For information on where
variables are stored in memory, see Chapter 10. “Memory Allocation and Access.”

• Identifiers

• Integer Data Types

• Floating-Point Data Types

• Fixed-Point Data Types

• Structures and Unions

• Pointer Types

• Literal Constant Types and Formats

• Standard Type Qualifiers

• Compiler-Specific type Qualifiers

• Variable Attributes

8.2 IDENTIFIERS

A C variable identifier (as well as a function identifier) is a sequence of letters and digits
where the underscore character, “_”, counts as a letter. Identifiers cannot start with a
digit. Although they may start with an underscore, such identifiers are reserved for the
compiler’s use and should not be defined by your programs. Such is not the case for
assembly domain identifiers, which often begin with an underscore, see the MPLAB®
XC16 Assembler, Linker and Utilities User’s Guide (DS50002106).

Identifiers are case sensitive, so main is different from Main.

All characters are significant in an identifier, although identifiers longer than 31
characters in length are less portable.
 2012-2018 Microchip Technology Inc. DS50002071G-page 145

Supported Data Types and Variables
8.3 INTEGER DATA TYPES

Table 8-1 shows integer data types that are supported in the compiler. All unspecified
or signed integer data types are arithmetic type signed integer. All unsigned integer
data types are arithmetic type unsigned integer.

There is no type for storing single bit quantities.

All integer values are specified in little endian format, which means:

• The least significant byte (LSB) is stored at the lowest address

• The least significant bit (LSb) is stored at the lowest-numbered bit position

As an example, the long value of 0x12345678 is stored at address 0x100 as follows:

As another example, the long value of 0x12345678 is stored in registers w4 and w5:

Signed values are stored as a two’s complement integer value.

Preprocessor macros that specify integer minimum and maximum values are available
after including <limits.h> in your source code, located by default in:

<install directory>\include

As the size of data types is not fully specified by the ANSI Standard, these macros allow
for more portable code which can check the limits of the range of values held by the
type on this implementation.

For information on implementation-defined behavior of integers, see
Section A.6 “Integers”

8.3.1 Double-Word Integers

The compiler supports data types for integers that are twice as long as long int.
Simply write long long int for a signed integer, or unsigned long long int
for an unsigned integer. To make an integer constant of type long long int, add the
suffix LL to the integer. To make an integer constant of type unsigned long long
int, add the suffix ULL to the integer.

You can use these types in arithmetic like any other integer types.

TABLE 8-1: INTEGER DATA TYPES

Type Bits Min. Max.

char, signed char 8 -128 127

unsigned char 8 0 255

short, signed short 16 -32768 32767

unsigned short 16 0 65535

int, signed int 16 -32768 32767

unsigned int 16 0 65535

long, signed long 32 -231 231 - 1

unsigned long 32 0 232 - 1

long long*, signed long long* 64 -263 263 - 1

unsigned long long* 64 0 264 - 1

* ANSI-89 extension

0x100 0x101 0x102 0X103

0x78 0x56 0x34 0x12

w4 w5

0x5678 0x1234
 2012-2018 Microchip Technology Inc. DS50002071G-page 146

MPLAB® XC16 C Compiler User’s Guide
8.3.2 char Types

The compiler supports data types for char, which defaults to signed char. An option
can be used to use unsigned char as the default, see Section 5.7.3 “Options for
Controlling the C Dialect”

It is a common misconception that the C char types are intended purely for ASCII char-
acter manipulation. This is not true; indeed, the C language makes no guarantee that
the default character representation is even ASCII (however, this implementation does
use ASCII as the character representation). The char types are simply the smallest of
the multi-bit integer sizes and behave in all respects like integers. The reason for the
name “char” is historical and does not mean that char can only be used to represent
characters. It is possible to freely mix char values with values of other types in C
expressions. With the MPLAB XC16 C Compiler, the char types will commonly be
used for a number of purposes: as 8-bit integers, as storage for ASCII characters and
for access to I/O locations.
DS50002071G-page 147 2012-2018 Microchip Technology Inc.

Supported Data Types and Variables
8.4 FLOATING-POINT DATA TYPES

The compiler uses the IEEE-754 format. Table 8-2 shows floating point data types that
are supported. All floating point data types are arithmetic type real.

All floating point values are specified in little endian format, which means:

• The least significant byte (LSB) is stored at the lowest address

• The least significant bit (LSb) is stored at the lowest-numbered bit position

As an example, the double value of 1.2345678 is stored at address 0x100 as follows:

As another example, the double value of 1.2345678 is stored in registers w4 and w5:

Floating-point types are always signed and the unsigned keyword is illegal when
specifying a floating-point type.

Preprocessor macros that specify valid ranges are available after including
<float.h> in your source code.

For information on implementation-defined behavior of floating point numbers, see
section Section A.7 “Floating Point”

TABLE 8-2: FLOATING POINT DATA TYPES

Type Bits E Min E Max N Min N Max

float 32 -126 127 2-126 2128

double* 32 -126 127 2-126 2128

long double 64 -1022 1023 2-1022 21024

E = Exponent
N = Normalized (approximate)
* double is equivalent to long double if -fno-short-double is used.

0x100 0x101 0x102 0X103

0x51 0x06 0x9E 0x3F

w4 w5

0x0651 0x3F9E
 2012-2018 Microchip Technology Inc. DS50002071G-page 148

MPLAB® XC16 C Compiler User’s Guide
8.5 FIXED-POINT DATA TYPES

Table 8-3 shows fixed-point data types that are supported by the compiler when the
-menable-fixed command line option is specified. See Chapter 9. “Fixed-Point
Arithmetic Support” for more details on the compiler's support for the fixed-point C lan-
guage dialect. If the signed or unsigned type specifier is not present, the type is
assumed to be signed.

As with integer and floating point data types, all fixed-point values are represented in a
little endian format, which means:

• The Least Significant Byte (LSB) is stored at the lowest address

• The Least Significant bit (LSb) is stored at the lowest-numbered bit position

TABLE 8-3: FIXED POINT INTEGER DATA TYPES

Type Bits Min Max

_Fract 16 -1.0 1.0 - 2^-15

short _Fract 16 -1.0 1.0 - 2^-15

signed _Fract 16 -1.0 1.0 - 2^-15

signed short _Fract 16 -1.0 1.0 - 2^-15

unsigned _Fract 16 0.0 1.0 - 2^-15

unsigned short _Fract 16 0.0 1.0 - 2^-15

long _Fract 32 -1.0 1.0 - 2^-31

signed long _Fract 32 -1.0 1.0 - 2^-31

unsigned long _Fract 32 0.0 1.0 - 2^-31

_Accum 40 -256.0 256.0 - 2^-31

short _Accum 40 -256.0 256.0 - 2^-31

long _Accum 40 -256.0 256.0 - 2^-31

signed _Accum 40 -256.0 256.0 - 2^-31

signed short _Accum 40 -256.0 256.0 - 2^-31

signed long _Accum 40 -256.0 256.0 - 2^-31

unsigned _Accum 40 0.0 256.0 - 2^-31

unsigned short _Accum 40 0.0 256.0 - 2^-31

unsigned long _Accum 40 0.0 256.0 - 2^-31
DS50002071G-page 149 2012-2018 Microchip Technology Inc.

Supported Data Types and Variables
8.6 STRUCTURES AND UNIONS

MPLAB XC16 C Compiler supports struct and union types. Structures and unions
only differ in the memory offset applied to each member.

These types will be at least 1 byte wide. Bit-fields are fully supported in structures.

Structures and unions may be passed freely as function arguments and function return
values. Pointers to structures and unions are fully supported.

Implementation-defined behavior of structures, unions and bit-fields is described in
Section A.10 “Structures, Unions, Enumerations and Bit-Fields”

8.6.1 Structure and Union Qualifiers

The MPLAB XC16 C Compiler supports the use of type qualifiers on structures. When
a qualifier is applied to a structure, all of its members will inherit this qualification. In the
following example, the structure is qualified const.

 const struct foo {
 int number;
 int *ptr;
 } record = { 0x55, &i };

In this case, the entire structure may be placed into the program space where each
member will be read-only. Remember that all members are usually initialized if a
structure is const as they cannot be initialized at runtime.

If the members of the structure were individually qualified const, but the structure was
not, then the structure would be positioned into RAM, but each member would be still
be read-only. Compare the following structure with the one above.

 struct {
 const int number;
 int * const ptr;
 } record = { 0x55, &i};
 2012-2018 Microchip Technology Inc. DS50002071G-page 150

MPLAB® XC16 C Compiler User’s Guide

DS
8.6.2 Bit-fields in Structures

The MPLAB XC16 C Compiler fully supports bit-fields in structures.

Bit-fields are, by default, signed int. They may be made an unsigned int
bit-field by using a command line option, see Section 5.7.3 “Options for Con-
trolling the C Dialect”

The first bit defined will be the LSb of the word in which it will be stored.

The compiler supports bit-fields with any bit size, up to the size of the underlying type.
Any integral type can be made into a bit-field. The allocation does not normally cross a
bit boundary natural to the underlying type. For example:

 struct foo {
 long long i:40;
 int j:16;
 char k:8;
 } x;

 struct bar {
 long long I:40;
 char J:8;
 int K:16;
 } y;

struct foo will have a size of 10 bytes using the compiler. i will be allocated at bit
offset 0 (through 39). There will be 8 bits of padding before j, allocated at bit offset 48.
If j were allocated at the next available bit offset (40), it would cross a storage bound-
ary for a 16 bit integer. k will be allocated after j, at bit offset 64. The structure will con-
tain 8 bits of padding at the end to maintain the required alignment in the case of an
array. The alignment is 2 bytes because the largest alignment in the structure is 2
bytes.

struct bar will have a size of 8 bytes using the compiler. I will be allocated at bit
offset 0 (through 39). There is no need to pad before J because it will not cross a
storage boundary for a char. J is allocated at bit offset 40. K can be allocated starting
at bit offset 48, completing the structure without wasting any space.

Unnamed bit-fields may be declared to pad out unused space between active bits in
control registers. For example:

 struct foo {
 unsigned lo : 1;
 unsigned : 6;
 unsigned hi : 1;
 } x;

A structure with bit-fields may be initialized by supplying a comma-separated list of ini-
tial values for each field. For example:

 struct foo {
 unsigned lo : 1;
 unsigned mid : 6;
 unsigned hi : 1;
 } x = {1, 8, 0};

Structures with unnamed bit-fields may be initialized. No initial value should be supplied
for the unnamed members, for example:

 struct foo {
 unsigned lo : 1;
 unsigned : 6;
 unsigned hi : 1;
 } x = {1, 0};

will initialize the members lo and hi correctly.
50002071G-page 151 2012-2018 Microchip Technology Inc.

Supported Data Types and Variables
8.7 POINTER TYPES

There are two basic pointer types supported by the MPLAB XC16 C Compiler: data
pointers and function pointers. Data pointers hold the addresses of variables which can
be indirectly read, and possibly indirectly written, by the program. Function pointers
hold the address of an executable function which can be called indirectly via the pointer.

8.7.1 Combining Type Qualifiers and Pointers

It is helpful to first review the ANSI C standard conventions for definitions of pointer
types.

Pointers can be qualified like any other C object, but care must be taken when doing
so as there are two quantities associated with pointers. The first is the actual pointer
itself, which is treated like any ordinary C variable and has memory reserved for it. The
second is the target, or targets, that the pointer references, or to which the pointer
points. The general form of a pointer definition looks like the following:

target_type_&_qualifiers * pointer’s_qualifiers pointer’s_name;

Any qualifiers to the right of the * (i.e., next to the pointer’s name) relate to the pointer
variable itself. The type and any qualifiers to the left of the * relate to the pointer’s tar-
gets. This makes sense since it is also the * operator that dereferences a pointer, which
allows you to get from the pointer variable to its current target.

Here are three examples of pointer definitions using the volatile qualifier. The fields
in the definitions have been highlighted with spacing:

volatile int * vip ;
int * volatile ivp ;
volatile int * volatile vivp ;

The first example is a pointer called vip. It contains the address of int objects that
are qualified volatile. The pointer itself – the variable that holds the address – is not
volatile; however, the objects that are accessed when the pointer is dereferenced
are treated as being volatile. In other words, the target objects accessible via the
pointer may be externally modified.

The second example is a pointer called ivp which also contains the address of int
objects. In this example, the pointer itself is volatile, that is, the address the pointer
contains may be externally modified; however, the objects that can be accessed when
dereferencing the pointer are not volatile.

The last example is of a pointer called vivp which is itself qualified volatile, and
which also holds the address of volatile objects.

Bear in mind that one pointer can be assigned the addresses of many objects; for
example, a pointer that is a parameter to a function is assigned a new object address
every time the function is called. The definition of the pointer must be valid for every
target address assigned.

Note: Care must be taken when describing pointers. Is a “const pointer” a pointer
that points to const objects, or a pointer that is const itself? You can talk
about “pointers to const” and “const pointers” to help clarify the definition,
but such terms may not be universally understood.
 2012-2018 Microchip Technology Inc. DS50002071G-page 152

MPLAB® XC16 C Compiler User’s Guide
8.7.2 Data Pointers

All standard data pointers are 16 bits wide. This is sufficient to access the full data
memory space.

These pointers are also able to access const-qualified objects, although in the pro-
gram memory space, const-qualified objects appear in a unique memory range in the
data space using the PSV window. In this case, the -mconst-in-data option should
not be in force (see Section 5.7.1 “Options Specific to 16-Bit Devices” for more infor-
mation.)

Pointers which access the managed PSV space are 32-bits wide. The extra space
allows these pointers to access any PSV page.

A set of special purpose, 32-bit data pointers are also available. See Chapter
10. “Memory Allocation and Access.” for more information.

8.7.3 Function Pointers

The MPLAB XC16 C Compiler fully supports pointers to functions, which allows func-
tions to be called indirectly. Function pointers are always 16 bits wide.

Because function pointers are only 16 bits wide, these pointers cannot point beyond
the first 64K of Flash. If the address of a function that is allocated beyond the first 64K
of Flash is taken, the linker will arrange for a handle section to be generated. The
handle section will always be allocated within the first 64K. Each handle provides a
level of indirection which allows 16-bit pointers to access the full range of Flash. This
operation may be disable with the --no-handles linker option.

8.7.4 Special Pointer Targets

Pointers and integers are not interchangeable. Assigning an integer value to a pointer
will generate a warning to this effect. For example:

const char * cp = 0x123; // the compiler will flag this as bad code

There is no information in the integer, 0x123, relating to the type, size or memory loca-
tion of the destination. Avoid assigning an integer (whether it be a constant or variable)
to a pointer at all times. Addresses assigned to pointers should be derived from the
address operator "&" that C provides.

In instances where you need to have a pointer reference a seemingly arbitrary address
or address range, consider defining an object or label at the desired location. If the
object is defined in assembly code, use a C declaration (using the extern keyword)
to create a C object which links in with the external object and whose address can be
taken.

Take care when comparing (subtracting) pointers. For example:

if(cp1 == cp2)
 ; take appropriate action

The ANSI C standard only allows pointer comparisons when the two pointer targets are
the same object. The address may extend to one element past the end of an array.

Comparisons of pointers to integer constants are even more risky, for example:

if(cp1 == 0x246)
 ; take appropriate action

A NULL pointer is the one instance where a constant value can be safely assigned to a
pointer. A NULL pointer is numerically equal to 0 (zero), but since they do not guarantee
to point to any valid object and should not be dereferenced, this is a special case
imposed by the ANSI C standard. Comparisons with the macro NULL are also allowed.
DS50002071G-page 153 2012-2018 Microchip Technology Inc.

Supported Data Types and Variables
8.8 LITERAL CONSTANT TYPES AND FORMATS

A literal constant is used to represent a numerical value in the source code; for exam-
ple, 123 is a constant. Like any value, a literal constant must have a C type. In addition
to a literal constant’s type, the actual value can be specified in one of several formats.
The format of integral literal constants specifies their radix. MPLAB XC16 supports the
ANSI standard radix specifiers as well as ones which enables binary constants to be
specified in C code.

The formats used to specify the radices are given in Table 8-4. The letters used to spec-
ify binary or hexadecimal radices are case insensitive, as are the letters used to specify
the hexadecimal digits.

Any integral literal constant will have a type of int, long int or long long int,
so that the type can hold the value without overflow. Literal constants specified in octal
or hexadecimal may also be assigned a type of unsigned int, unsigned long
int or unsigned long long int if the signed counterparts are too small to hold
the value.

The default types of literal constants may be changed by the addition of a suffix after
the digits, e.g., 23U, where U is the suffix. Table 8-5 shows the possible combination of
suffixes, and the types that are considered when assigning a type. So, for example, if
the suffix l is specified and the value is a decimal literal constant, the compiler will
assign the type long int, if that type will hold the lineal constant; otherwise, it will
assign long long int. If the literal constant was specified as an octal or hexadecimal
constant, then unsigned types are also considered.

TABLE 8-4: RADIX FORMATS

Radix Format Example

binary 0b number or 0B number 0b10011010

octal 0 number 0763

decimal number 129

hexadecimal 0x number or 0X number 0x2F

TABLE 8-5: SUFFIXES AND ASSIGNED TYPES

Suffix Decimal Octal or Hexadecimal

u or U unsigned int
unsigned long int
unsigned long long int

unsigned int
unsigned long int
unsigned long long int

l or L long int
long long int

long int
unsigned long int
long long int
unsigned long long int

u or U, and l or L unsigned long int
unsigned long long int

unsigned long int
unsigned long long int

ll or LL long long int long long int
unsigned long long int

u or U, and ll or LL unsigned long long int unsigned long long int
 2012-2018 Microchip Technology Inc. DS50002071G-page 154

MPLAB® XC16 C Compiler User’s Guide
Here is an example of code that may fail because the default type assigned to a literal
constant is not appropriate:

unsigned long int result;
unsigned char shifter;

void main(void)
{

shifter = 20;
result = 1 << shifter;
// code that uses result

}

The literal constant 1 will be assigned an int type; hence the result of the shift opera-
tion will be an int and the upper bits of the long variable, result, can never be set,
regardless of how much the literal constant is shifted. In this case, the value 1 shifted
left 20 bits will yield the result 0, not 0x100000.

The following uses a suffix to change the type of the literal constant, hence ensure the
shift result has an unsigned long type.

result = 1UL << shifter;

Floating-point literal constants have double type unless suffixed by f or F, in which
case it is a float constant. The suffixes l or L specify a long double type. In
MPLAB XC16, the double type equates to a 32-bit float type. The command line
option, -fno-short-double, may be use to specify double as a 64-bit long
double type.

Fixed-point literal constants look like floating point numbers, suffixed with combinations
of [u][h,l]<r,k>. The suffix u means unsigned. The suffixes h and l signify short and
long respectively. The suffix r denotes a _Fract type and k specifies an _Accum type.
So for example, -1.0r is a signed _Fract and 0.5uhk is an unsigned short _Accum.

Character literal constants are enclosed by single quote characters, ’, for example
‘a’. A character literal constant has int type, although this may be optimized to a
char type later in the compilation.

Multi-byte character literal constants are supported by this implementation.

String constants, or string literals, are enclosed by double quote characters ", for exam-
ple "hello world". The type of string literal constants is const char * and the
character that make up the string may be stored in the program memory.

To comply with the ANSI C standard, the compiler does not support the extended char-
acter set in characters or character arrays. Instead, they need to be escaped using the
backslash character, as in the following example:

const char name[] = "Bj\xf8k";
printf("%s's Resum\xe9", name); \\ prints "Bjørk's Resumé"

Defining and initializing a non-const array (i.e., not a pointer definition) with a string,
for example:

char ca[]= "two"; // "two" different to the above

is a special case and produces an array in data space which is initialized at startup with
the string "two", whereas a string literal constant used in other contexts represents an
unnamed array, accessed directly from its storage location.

The compiler will use the same storage location and label for strings that have identical
character sequences, except where the strings are used to initialize an array residing
in the data space as shown in the last statement in the previous example.

Two adjacent string literal constants (i.e., two strings separated only by white space)
are concatenated by the C preprocessor. Thus:

const char * cp = "hello " "world"; will assign the pointer with the address
of the string "hello world."
DS50002071G-page 155 2012-2018 Microchip Technology Inc.

Supported Data Types and Variables
8.9 STANDARD TYPE QUALIFIERS

Type qualifiers provide additional information regarding how an object may be used.
The MPLAB XC16 compiler supports both ANSI C qualifiers and additional special
qualifiers which are useful for embedded applications and which take advantage of the
PIC MCU and dsPIC DSC architectures.

8.9.1 Const Type Qualifier

The compiler supports the use of the ANSI type qualifiers const and volatile.

The const type qualifier is used to tell the compiler that an object is read only and will
not be modified. If any attempt is made to modify an object declared const, the
compiler will issue a warning or error.

User-defined objects declared const are placed, by default, in the program space and
may be accessed via the program visibility space, see Section 10.4 “Variables in Pro-
gram Space” Usually a const object must be initialized when it is declared, as it cannot
be assigned a value at any point at runtime. For example:

const int version = 3;

will define version as being an int variable that will be placed in the program mem-
ory, will always contain the value 3, and which can never be modified by the program.

The memory model -mconst-in-data will allocate const-qualified objects in data
space, which may be writable.

8.9.2 Volatile Type Qualifier

The volatile type qualifier is used to tell the compiler that an object cannot be guar-
anteed to retain its value between successive accesses. This prevents the optimizer
from eliminating apparently redundant references to objects declared volatile
because it may alter the behavior of the program to do so.

Any SFR which can be modified by hardware or which drives hardware is qualified as
volatile, and any variables which may be modified by interrupt routines should use
this qualifier as well. For example:

extern volatile unsigned int INTCON1 __attribute__((__sfr__));

The code produced by the compiler to access volatile objects may be different to
that to access ordinary variables, and typically the code will be longer and slower for
volatile objects, so only use this qualifier if it is necessary. Failure to use this qual-
ifier when it is required, may lead to code failure.

Another use of the volatile keyword is to prevent variables being removed if they
are not used in the C source. If a non-volatile variable is never used, or used in a
way that has no effect on the program’s function, then it may be removed before code
is generated by the compiler.

A C statement that consists only of a volatile variable’s name will produce code that
reads the variable’s memory location and discards the result. For example the entire
statement:

PORTB;

will produce assembly code the reads PORTB, but does nothing with this value. This is
useful for some peripheral registers that require reading to reset the state of interrupt
flags. Normally such a statement is not encoded as it has no effect.

Some variables are treated as being volatile even though they may not be qualified
in the source code. See Chapter 16. “Mixing C and Assembly Code.” if you have
assembly code in your project.
 2012-2018 Microchip Technology Inc. DS50002071G-page 156

MPLAB® XC16 C Compiler User’s Guide
8.10 COMPILER-SPECIFIC TYPE QUALIFIERS

The MPLAB XC16 C Compiler supports special type qualifiers, all of which allow the
user to control how variables are accessed.

8.10.1 __psv__ Type Qualifier

The __psv__ qualifier can be applied to variables or pointer targets that have been
allocated to the program memory space. It indicates how the variable or pointer targets
will be accessed/read. Allocation of variables to the program memory space is a sepa-
rate process and is made using the space attribute, so this qualifier is often used in
conjunction with that attribute when the variable is defined. For example:

__psv__ unsigned int __attribute__((space(psv))) myPSVvar = 0x1234;
__psv__ char * myPSVpointer;

The pointer in this example does not use the space attribute as it is located in data
memory, but the qualifier indicates how the pointer targets are to be accessed. For
more information on the space attribute and how to allocate variables to the Flash
memory, see Section 8.11 “Variable Attributes” For basic information on the memory
layout and how program memory is accessed by the device, see Section 10.2 “Address
Spaces”

When variables qualified as __psv__ are read, the compiler will manage the selection
of the program memory page visible in the data memory window. This means that you
do not need to adjust the PSVPAG SFR explicitly in your source code, but the gener-
ated code may be slightly less efficient than that produced if this window was managed
by hand.

The compiler will assume that any object or pointer target qualified with __psv__ will
wholly fit within a single PSV page. Such is the case for objects allocated memory using
the psv or auto_psv space attribute. If this is not the case, then you should use the
__prog__ qualifier (see Section 8.10.2 “__prog__ Type Qualifier”) and an appropriate
space attribute.

8.10.2 __prog__ Type Qualifier

The __prog__ qualifier is similar to the __psv__ qualifier (see
Section 8.10.1 “__psv__ Type Qualifier”), but indicates to the compiler that the qualified
variable or pointer target may straddle PSV pages. As a result, the compiler will gener-
ate code so these qualified objects can be read correctly, regardless of which page they
are allocated to. This code may be longer than that to access variables or pointer
targets which are qualified __psv__. For example:

__prog__ unsigned int __attribute__((space(prog))) myPROGvar = 0x1234;
__prog__ char * myPROGpointer;

The pointer in this example does not use the space attribute as it is located in data
memory, but the qualifier indicates how the pointer targets are to be accessed. For
more information on the space attribute and how to allocate variables to the Flash
memory, see Section 8.11 “Variable Attributes” and Section 10.2 “Address Spaces” for
basic information on the memory layout and how program memory is accessed by the
device.
DS50002071G-page 157 2012-2018 Microchip Technology Inc.

Supported Data Types and Variables
8.10.3 __eds__ Type Qualifier

The __eds__ qualifier indicates that the qualified object has been located in an EDS
accessible memory space and that the compiler should manage the appropriate regis-
ters used to access this memory.

When used with pointers, it implies that the compiler should make few assumptions as
to the memory space in which the pointer target is located and that the target may be
in one of several memory spaces, which include: space(data) (and its subsets), eds,
space(eedata), space(prog), space(psv), space(auto_psv), and on some
devices space(pmp). Not all devices support all memory spaces. For example

__eds__ unsigned int __attribute__((eds)) myEDSvar;
__eds__ char * myEDSpointer;

The compiler will automatically assert the page attribute to scalar variable declarations;
this allows the compiler to generate more efficient code when accessing larger data
types. Remember, scalar variables do not include structures or arrays. To force paging
of a structure or array, please manually use the page attribute and the compiler will
prevent the object from crossing a page boundary.

For read access to __eds__ qualified variables will automatically manipulate the
PSVPAG or DSRPAG register (as appropriate). For devices that support extended data
space memory, the compiler will also manipulate the DSWPAG register.

For more on this qualifier, see Section 10.7 “Extended Data Space Access”

8.10.4 __pack_upper_byte Type Qualifier

This qualifier allows the use of the upper byte of Flash memory for data storage. For
16-bit devices, a 24-bit word is used in Flash memory. The architecture supports the
mapping of areas of Flash into the data space, but this mapping is only 16 bits wide to
fit in with data space dimensions, unless the __pack_upper_byte qualifier is used.

For more information on this qualifier, see Section 10.10 “Packing Data Stored in
Flash”

8.10.5 __pmp__ Type Qualifier

This qualifier may be used with those devices that contain a Parallel Master Port (PMP)
peripheral, which allows the connection of various memory and non-memory devices
directly to the device. When variables or pointer targets qualified with __pmp__ are
accessed, the compiler will generate the appropriate sequence for accessing these
objects via the PMP peripheral on the device. For example:

__pmp__ int auxDevice
 __attribute__((space(pmp(external_PMP_memory))));
__pmp__ char * myPMPpointer;

In addition to the qualifier, the int variable uses a memory space which would need to
be predefined. The pointer in this example does not use the space attribute as the it is
located in data memory, but the qualifier indicates how the pointer targets are to be
accessed. For more information on the space attribute, see Section 8.11 “Variable
Attributes” For basic information on the memory layout and how program memory is
accessed by the device, see Section 10.2 “Address Spaces”

For more on the qualifier, see Section 10.5 “Parallel Master Port Access”

Note: Some devices use DSRPAG to represent extended read access to Flash or
the extended data space (EDS).
 2012-2018 Microchip Technology Inc. DS50002071G-page 158

MPLAB® XC16 C Compiler User’s Guide
8.10.6 __external__ Type Qualifier

This qualifier is used to indicate that the compiler should access variables or pointer
targets which have been located in external memory. These memories include any that
have been attached to the device, but which are not, or cannot, be accessed using the
parallel master port (PMP) peripheral (see Section 8.10.5 “__pmp__ Type Qualifier”)
Access of objects in external memory is similar to that for PMP access, but the routines
that do so are fully configurable and, indeed, need to be defined before any access can
take place. See Section 10.6 “External Memory Access” for more information on how
the memory space is configured and access routines are defined.

The qualifier is used as in the following example.

__external__ int external_array[256]
 __attribute__((space(external(external_memory))));
__external__ char * myExternalPointer;

In addition to the qualifier, the array uses a memory space which would need to be pre-
defined. The pointer in this example does not use the space attribute as it is located
in data memory, but the qualifier indicates how the pointer targets are to be accessed.
For more information on the space attribute, see Section 8.11 “Variable Attributes” For
basic information on the memory layout and how program memory is accessed by the
device, see Section 10.2 “Address Spaces”

For more on the qualifier, see Section 10.6 “External Memory Access”
DS50002071G-page 159 2012-2018 Microchip Technology Inc.

Supported Data Types and Variables
8.11 VARIABLE ATTRIBUTES

The MPLAB XC16 C Compiler uses attributes to indicate memory allocation, type and
other configuration for variables, structure members and types. Other attributes are
available for functions, and these are described in Section 13.2.2 “Function Attributes”
Qualifiers are used independently to attributes, see Section 8.10 “Compiler-Specific
type Qualifiers” They only indicate how objects are accessed, but must be used where
necessary to ensure correct code operation.

The compiler keyword __attribute__ allows you to specify the attributes of objects.
This keyword is followed by an attribute specification inside double parentheses. The
following attributes are currently supported for variables:

• address (addr)
• aligned (alignment)
• boot
• deprecated
• eds
• fillupper
• far
• mode (mode)
• near
• noload
• packed
• page
• persistent
• preserved
• priority(n)
• reverse (alignment)
• section ("section-name")
• secure
• sfr (address)
• shared
• space (space)
• transparent_union
• unordered
• unsupported(message)
• unused
• update
• weak

You may also specify attributes with __ (double underscore) preceding and following
each keyword (e.g., __aligned__ instead of aligned). This allows you to use them
in header files without being concerned about a possible macro of the same name.

To specify multiple attributes, separate them by commas within the double
parentheses, for example:

 __attribute__ ((aligned (16), packed)).

Note: It is important to use variable attributes consistently throughout a project.
For example, if a variable is defined in file A with the far attribute and
declared extern in file B without far, then a link error may result.
 2012-2018 Microchip Technology Inc. DS50002071G-page 160

MPLAB® XC16 C Compiler User’s Guide
address (addr)
The address attribute specifies an absolute address for the variable. This attribute
can be used in conjunction with a section attribute. This can be used to start a group
of variables at a specific address:

int foo __attribute__((section("mysection"),address(0x900)));
int bar __attribute__((section("mysection")));
int baz __attribute__((section("mysection")));

A variable with the address attribute cannot be placed into the auto_psv space (see
the space() attribute or the -mconst-in-code option); attempts to do so will cause
a warning and the compiler will place the variable into the PSV space. If the variable is
to be placed into a PSV section, the address should be a program memory address.

aligned (alignment)
This attribute specifies a minimum alignment for the variable, measured in bytes. The
alignment must be a power of two. For example, the declaration:

int x __attribute__ ((aligned (16))) = 0;

causes the compiler to allocate the global variable x on a 16-byte boundary. On the
dsPIC DSC device, this could be used in conjunction with an asm expression to access
DSP instructions and addressing modes that require aligned operands.

As in the preceding example, you can explicitly specify the alignment (in bytes) that you
wish the compiler to use for a given variable. Alternatively, you can leave out the
alignment factor and just ask the compiler to align a variable to the maximum useful
alignment for the dsPIC DSC device. For example, you could write:

short array[3] __attribute__ ((aligned));

Whenever you leave out the alignment factor in an aligned attribute specification, the
compiler automatically sets the alignment for the declared variable to the largest
alignment for any data type on the target machine – which in the case of the dsPIC DSC
device is two bytes (one word).

The aligned attribute can only increase the alignment; you can decrease it by spec-
ifying packed (see below). The aligned attribute conflicts with the reverse attribute.
It is an error condition to specify both.

The aligned attribute can be combined with the section attribute. This will allow the
alignment to take place in a named section. By default, when no section is specified,
the compiler will generate a unique section for the variable. This will provide the linker
with the best opportunity for satisfying the alignment restriction without using internal
padding that may happen if other definitions appear within the same aligned section.

boot

This attribute can be used to define protected variables in Boot Segment (BS) RAM:

int __attribute__((boot)) boot_dat[16];

Variables defined in BS RAM will not be initialized on startup. Therefore all variables in
BS RAM must be initialized using inline code. A diagnostic will be reported if initial
values are specified on a boot variable.

An example of initialization is as follows:

int __attribute__((boot)) time = 0; /* not supported */
int __attribute__((boot)) time2;
void __attribute__((boot)) foo()
{
 time2 = 55; /* initial value must be assigned explicitly */
}

DS50002071G-page 161 2012-2018 Microchip Technology Inc.

Supported Data Types and Variables
deprecated

The deprecated attribute causes the declaration to which it is attached to be specially
recognized by the compiler. When a deprecated function or variable is used, the
compiler will emit a warning.

A deprecated definition is still defined and therefore present in any object file. For
example, compiling the following file:

int __attribute__((__deprecated__)) i;
int main() {
 return i;
}

will produce the warning:

deprecated.c:4: warning: `i’ is deprecated (declared
 at deprecated.c:1)

i is still defined in the resulting object file in the normal way.

eds

In the attribute context, the eds (extended data space) attribute indicates to the com-
piler that the variable will be allocated anywhere within data memory. Variables with this
attribute will likely also have the __eds__ type qualifier (see Section 10.7 “Extended
Data Space Access”) for the compiler to properly generate the correct access
sequence. Not that the __eds__ qualifier and the eds attribute are closely related, but
not identical. On some devices, eds may need to be specified when allocating vari-
ables into certain memory spaces such as space (ymemory) or space (dma) as
this memory may only exist in the extended data space.

fillupper

This attribute can be used to specify the upper byte of a variable stored into a
space(prog) section.

For example:

int foo[26] __attribute__((space(prog),fillupper(0x23))) = { 0xDEAD };

will fill the upper bytes of array foo with 0x23, instead of 0x00. foo[0] will still be
initialized to 0xDEAD.

The command line option -mfillupper=0x23 will perform the same function.

far

The far attribute tells the compiler that the variable will not necessarily be allocated in
near (first 8 KB) data space, (i.e., the variable can be located anywhere in data memory
between 0x0000 and 0x7FFF).

mode (mode)
This attribute specifies the data type for the declaration as whichever type corresponds
to the mode mode. This in effect lets you request an integer or floating point type
according to its width. Valid values for mode are as follows:

Mode Width Compiler Type

QI 8 bits char

HI 16 bits int

SI 32 bits long

DI 64 bits long long

SF 32 bits float

DF 64 bits long double
 2012-2018 Microchip Technology Inc. DS50002071G-page 162

MPLAB® XC16 C Compiler User’s Guide
This attribute is useful for writing code that is portable across all supported compiler tar-
gets. For example, the following function adds two 32-bit signed integers and returns a
32-bit signed integer result:

typedef int __attribute__((__mode__(SI))) int32;
int32
add32(int32 a, int32 b)
 {
 return(a+b);
 }

You may also specify a mode of byte or __byte__ to indicate the mode correspond-
ing to a one-byte integer, word or __word__ for the mode of a one-word integer, and
pointer or __pointer__ for the mode used to represent pointers.

near

The near attribute tells the compiler that the variable is allocated in near data space
(the first 8 KB of data memory). Such variables can sometimes be accessed more
efficiently than variables not allocated (or not known to be allocated) in near data
space.

int num __attribute__ ((near));

noload

The noload attribute indicates that space should be allocated for the variable, but that
initial values should not be loaded. This attribute could be useful if an application is
designed to load a variable into memory at run time, such as from a serial EEPROM.

int table1[50] __attribute__ ((noload)) = { 0 };

packed

The packed attribute specifies that a structure member should have the smallest
possible alignment unless you specify a larger value with the aligned attribute.

Here is a structure in which the member x is packed, so that it immediately follows a,
with no padding for alignment:

struct foo
{
char a;
int x[2] __attribute__ ((packed));
};

page

This attribute specifies that the object cannot exceed a page boundary. The page
boundary applied depends upon where the object is allocated. An object located in a
psv space cannot cross a 32K boundary; an object located in prog space cannot cross
a 64K boundary.

unsigned int var[10] __attribute__ ((space(auto_psv)));

The space(auto_psv) or space(psv) attribute will use a single memory page by
default.

__eds__ unsigned int var[10] __attribute__ ((eds, page));

When dealing with eds, please refer to Section 10.7 “Extended Data Space Access”
for more information.

Note: The device architecture requires that words be aligned on even byte
boundaries, so care must be taken when using the packed attribute to
avoid run-time addressing errors.
DS50002071G-page 163 2012-2018 Microchip Technology Inc.

Supported Data Types and Variables
persistent

The persistent attribute specifies that the variable should not be initialized or
cleared at startup. A variable with the persistent attribute could be used to store
state information that will remain valid after a device Reset.

int last_mode __attribute__ ((persistent));

Persistent data is not normally initialized by the C run-time. However, from a
cold-restart, persistent data may not have any meaningful value. This code example
shows how to safely initialize such data:

#include <p24Fxxxx.h>

int last_mode __attribute__((persistent));

int main()
{
 if ((RCONbits.POR == 0) &&
 (RCONbits.BOR == 0)) {
 /* last_mode is valid */
 } else {
 /* initialize persistent data */
 last_mode = 0;
 }
}

This attribute can only be used in conjunction with a RAM resident object, i.e. not in
FLASH.

preserved

The preserved attribute can be applied to a variable to indicate that this variable's
value should be preserved on a restart. A restart is a user-defined event which can be
different from a cold or warm reset. Preserved variables require information from a pre-
viously linked executable in order to function; please see the linker option
--preserved=.

priority(n)
The priority attribute can be applied to a variable to group initializations together.
n must be between 1 and 65535, with 1 being the highest level. All initializations with
the same priority are initialized before moving onto the next priority level. Level 1 vari-
ables are initialized first and variables without a priority level are initialized last. The
attribute can also be applied to void functions (void result and argument types); in
this case the function(s) for level n will be executed immediately after all the
initializations for level n are complete.

reverse (alignment)
The reverse attribute specifies a minimum alignment for the ending address of a
variable, plus one. The alignment is specified in bytes and must be a power of two.
Reverse-aligned variables can be used for decrementing modulo buffers in dsPIC DSC
assembly language. This attribute could be useful if an application defines variables in
C that will be accessed from assembly language.

int buf1[128] __attribute__ ((reverse(256)));

The reverse attribute conflicts with the aligned and section attributes. An attempt
to name a section for a reverse-aligned variable will be ignored with a warning. It is an
error condition to specify both reverse and aligned for the same variable. A variable
with the reverse attribute cannot be placed into the auto_psv space (see the
space() attribute or the -mconst-in-code option); attempts to do so will cause a
warning and the compiler will place the variable into the PSV space.
 2012-2018 Microchip Technology Inc. DS50002071G-page 164

MPLAB® XC16 C Compiler User’s Guide
section ("section-name")
By default, the compiler places the objects it generates in sections such as .data and
.bss. The section attribute allows you to override this behavior by specifying that a
variable (or function) lives in a particular section.

struct a { int i[32]; };
struct a buf __attribute__((section("userdata"))) = {{0}};

secure

This attribute can be used to define protected variables in Secure Segment (SS) RAM:

int __attribute__((secure)) secure_dat[16];

Variables defined in SS RAM will not be initialized on startup. Therefore all variables in
SS RAM must be initialized using inline code. A diagnostic will be reported if initial
values are specified on a secure variable.

String literals can be assigned to secure variables using inline code, but they require
extra processing by the compiler. For example:

char *msg __attribute__((secure)) = "Hello!\n"; /* not supported */
char *msg2 __attribute__((secure));
void __attribute__((secure)) foo2()
{
 msg2 = "Goodbye..\n"; / value assigned explicitly */
}

In this case, storage must be allocated for the string literal in a memory space which is
accessible to the enclosing secure function. The compiler will allocate the string in a
psv constant section designated for the secure segment.

sfr (address)
The sfr attribute tells the compiler that the variable is an SFR and may also specify
the run-time address of the variable, using the address parameter.

extern volatile int __attribute__ ((sfr(0x200)))u1mod;

The use of the extern specifier is required in order to not produce an error.

shared

Used with co-resident applications. The variable may be used outside of the applica-
tion. A data item will be initialized at startup of any application in the co-resident set.

space (space)
Normally, the compiler allocates variables in general data space. The space attribute
can be used to direct the compiler to allocate a variable in specific memory spaces.
Memory spaces are discussed further in Section 10.2 “Address Spaces” The following
arguments to the space attribute are accepted:

data

Allocate the variable in general data space. Variables in general data space can
be accessed using ordinary C statements. This is the default allocation.

dataflash

Allocate the variable in dataflash.

xmemory - dsPIC30F, dsPIC33EP/F DSCs only

Note: By convention, the sfr attribute is used only in processor header files. To
define a general user variable at a specific address use the address attri-
bute in conjunction with near or far to specify the correct addressing
mode.

DD
DS50002071G-page 165 2012-2018 Microchip Technology Inc.

Supported Data Types and Variables
Allocate the variable in X data space. Variables in X data space can be accessed
using ordinary C statements. An example of xmemory space allocation is:

int x[32] __attribute__ ((space(xmemory)));

ymemory - dsPIC30F, dsPIC33EP/F DSCs only

Allocate the variable in Y data space. Variables in Y data space can be accessed
using ordinary C statements. An example of ymemory space allocation is:

int y[32] __attribute__ ((space(ymemory)));

prog

Allocate the variable in program space, in a section designated for executable
code. Variables in program space can not be accessed using ordinary C
statements. They must be explicitly accessed by the programmer, usually using
table-access inline assembly instructions, the program space visibility window, or
by the methods described in Section 10.4.2 “Access of Objects in Program
Memory”

auto_psv

Allocate the variable in program space, in a compiler-managed section
designated for automatic program space visibility window access. Variables in
auto_psv space can be read (but not written) using ordinary C statements, and
are subject to a maximum of 32K total space allocated. When specifying
space(auto_psv), it is not possible to assign a section name using the sec-
tion attribute; any section name will be ignored with a warning. A variable in the
auto_psv space cannot be placed at a specific address or given a reverse
alignment.

dma - PIC24E/H MCUs, dsPIC33E/F DSCs only

Allocate the variable in DMA memory. Variables in DMA memory can be
accessed using ordinary C statements and by the DMA peripheral.
__builtin_dmaoffset() and __builtin_dmapage() can be used to find
the correct offset for configuring the DMA peripheral. See Appendix G. “Built-in
Functions” for details.

 #include <p24Hxxxx.h>
 unsigned int BufferA[8] __attribute__((space(dma)));
 unsigned int BufferB[8] __attribute__((space(dma)));

 int main()
 {
 DMA1STA = __builtin_dmaoffset(BufferA);
 DMA1STB = __builtin_dmaoffset(BufferB);
 /* ... */
 }

psv

Allocate the variable in program space, in a section designated for program space
visibility window access. The linker will locate the section so that the entire vari-
able can be accessed using a single setting of the PSVPAG register. Variables in
PSV space are not managed by the compiler and can not be accessed using ordi-
nary C statements. They must be explicitly accessed by the programmer, usually
using table-access inline assembly instructions, or using the program space
visibility window.

Note: Variables placed in the auto_psv section are not loaded into data
memory at startup. This attribute may be useful for reducing RAM
usage.

DD

DD
 2012-2018 Microchip Technology Inc. DS50002071G-page 166

MPLAB® XC16 C Compiler User’s Guide
eedata - PIC24F, dsPIC30F/33F DSCs only

Allocate the variable in EEPROM Data (EEData) space. Variables in EEData
space can not be accessed using ordinary C statements. They must be explicitly
accessed by the programmer, usually using table-access inline assembly
instructions, or using the program space visibility window.

pmp

Allocate the variable in off chip memory associated with the PMP peripheral. For
complete details please see Section 10.5 “Parallel Master Port Access”

external

Allocate the variable in a user defined memory space. For complete details
please see Section 10.6 “External Memory Access”

transparent_union

This attribute, attached to a function parameter which is a union, means that the
corresponding argument may have the type of any union member, but the argument is
passed as if its type were that of the first union member. The argument is passed to the
function using the calling conventions of the first member of the transparent union, not
the calling conventions of the union itself. All members of the union must have the same
machine representation; this is necessary for this argument passing to work properly.

unordered

The unordered attribute indicates that the placement of this variable may move
relative to other variables within the current C source file.

const int __attribute__ ((unordered)) i;

unsupported(message)
This attribute will display a custom message when the object is used.

int foo __attribute__((unsupported("This object is unsupported"));

Access to foo will generate a warning message.

unused

This attribute, attached to a variable, means that the variable is meant to be possibly
unused. The compiler will not produce an unused variable warning for this variable.

update

The update attribute can be applied to a variable to indicate that this variable should be
initialized on a restart. This is particularly useful if -mpreserve-all or
--preserve-all is being used.

weak

The weak attribute causes the declaration to be emitted as a weak symbol. A weak
symbol may be superseded by a global definition. When weak is applied to a reference
to an external symbol, the symbol is not required for linking. For example:

extern int __attribute__((__weak__)) s;
int foo() {
 if (&s) return s;
 return 0; /* possibly some other value */
}

In the above program, if s is not defined by some other module, the program will still
link but s will not be given an address. The conditional verifies that s has been defined
(and returns its value if it has). Otherwise ‘0’ is returned. There are many uses for this
feature, mostly to provide generic code that can link with an optional library.

DD
DS50002071G-page 167 2012-2018 Microchip Technology Inc.

Supported Data Types and Variables
The weak attribute may be applied to functions as well as variables:

extern int __attribute__((__weak__)) compress_data(void *buf);
int process(void *buf) {
 if (compress_data) {
 if (compress_data(buf) == -1) /* error */
 }
 /* process buf */
}

In the above code, the function compress_data will be used only if it is linked in from
some other module. Deciding whether or not to use the feature becomes a link-time
decision, not a compile time decision.

The affect of the weak attribute on a definition is more complicated and requires
multiple files to describe:

 /* weak1.c */
 int __attribute__((__weak__)) i;

 void foo() {
 i = 1;
 }

 /* weak2.c */
 int i;
 extern void foo(void);

 void bar() {
 i = 2;
 }

 main() {
 foo();
 bar();
 }

Here the definition in weak2.c of i causes the symbol to become a strong definition.
No link error is emitted and both i’s refer to the same storage location. Storage is
allocated for weak1.c’s version of i, but this space is not accessible.

There is no check to ensure that both versions of i have the same type; changing i in
weak2.c to be of type float will still allow a link, but the behavior of function foo will
be unexpected. foo will write a value into the least significant portion of our 32-bit float
value. Conversely, changing the type of the weak definition of i in weak1.c to type
float may cause disastrous results. We will be writing a 32-bit floating point value into
a 16-bit integer allocation, overwriting any variable stored immediately after our i.

In the cases where only weak definitions exist, the linker will choose the storage of the
first such definition. The remaining definitions become inaccessible.

The behavior is identical, regardless of the type of the symbol; functions and variables
behave in the same manner.
 2012-2018 Microchip Technology Inc. DS50002071G-page 168

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 9. Fixed-Point Arithmetic Support
9.1 INTRODUCTION

The MPLAB XC16 C compiler supports fixed-point arithmetic according to the N1169
draft of ISO/IEC TR 18037, the ISO C99 technical report on Embedded C, is available
here:

http://www.open-std.org/JTC1/SC22/WG14/www/projects#18037

This chapter describes the implementation-specific details of the types and operations
supported by the compiler under this draft standard.

• Enabling Fixed-Point Arithmetic Support

• Data Types

• Rounding

• External Definitions

• Mixing C and Assembly Language Code

9.2 ENABLING FIXED-POINT ARITHMETIC SUPPORT

Fixed-point arithmetic support is not enabled by default in the MPLAB XC16 C com-
piler; it must be explicitly enabled by the -menable-fixed compiler switch, described
in Section 5.7 “Driver Option Descriptions.”
 2012-2018 Microchip Technology Inc. DS50002071G-page 169

http://www.open-std.org/JTC1/SC22/WG14/www/projects#18037

Fixed-Point Arithmetic Support
9.3 DATA TYPES

All 12 of the primary fixed-point types and their aliases, described in section 4.1 “Over-
view and principles of the fixed-point data types” of N1169, are supported via three
fixed point formats corresponding to the intrinsic hardware capabilities of Microchip
16-bit devices.

These formats represent the fixed-point C data types, shown below.

The _Sat type specifier, indicating that the values are saturated, may be used with any
type as described in N1169.

Unsigned types are represented identically to signed types, but negative numbers (sign
bit 1) are not valid values in the unsigned types. Signed types saturate at the most neg-
ative and positive numbers representable in the underlying format. Unsigned types sat-
urate at 0 and the most positive number representable in the format.

The default behavior of overflow on signed or unsigned types is not saturation (as
defined by the pragmas described in section 4.1.3 “Rounding and Overflow” of N1169).
Therefore variables in signed or unsigned types that are not declared as saturating with
the _Sat specifier may receive invalid values when assigned the result of an expres-
sion in which an overflow may occur (the results of non-saturating overflows are not
defined.)

TABLE 9-1: FIXED POINT FORMATS - 16-BIT DEVICES

Format Description

1.15 1 bit sign, 15 bits fraction

1.31 1 bit sign, 31 bits fraction

9.31 9 bit signed integer, 31 bits fraction

TABLE 9-2: FIXED POINT FORMATS - C DATA TYPES

Type Format

_Fract 1.15

short _Fract 1.15

signed _Fract 1.15

signed short _Fract 1.15

unsigned _Fract 1.15 (sign bit 0)

unsigned short _Fract 1.15 (sign bit 0)

long _Fract 1.31

signed long _Fract 1.31

unsigned long _Fract 1.31 (sign bit 0)

_Accum 9.31

short _Accum 9.31

long _Accum 9.31

signed _Accum 9.31

signed short _Accum 9.31

signed long _Accum 9.31

unsigned _Accum 9.31 (sign bit 0)

unsigned short _Accum 9.31 (sign bit 0)

unsigned long _Accum 9.31 (sign bit 0)
 2012-2018 Microchip Technology Inc. DS50002071G-page 170

MPLAB® XC16 C Compiler User’s Guide
9.4 ROUNDING

Three rounding modes are supported, corresponding to the three rounding modes sup-
ported by the 16-bit device fixed-point multiplication facilities.

All operations on fixed point variables, whether intrinsically supported by the hardware
or not, are performed according to the prevailing rounding mode chosen. The rounding
mode may be specified globally via the -menable-fixed compiler switch, as
described in Section 5.7 “Driver Option Descriptions.” or on a function-by-function
basis, via the -round attribute, as described in Section 13.2.2 “Function Attributes.”

These modes are described in more detail in the “16-bit MCU and DSC Programmer’s
Reference Manual” (DS70157).

9.5 DIVISION BY ZERO

The result of a division of a _Fract or _Accum typed value by zero is not defined, and
may or may not result in an arithmetic error trap. Regardless of the presence of the
_Sat keyword, division by zero does NOT produce the most negative or most positive
saturation value for the result type.

9.6 EXTERNAL DEFINITIONS

The MPLAB XC16 C compiler provides an include file, stdfix.h, which provides con-
stant, pragma, typedef, and function definitions as described in section 7.18a of N1169.

Fixed point conversion specifiers for formatted I/O, as described in section 4.1.9 “For-
matted I/O functions for fixed-point arguments” of N1169, are not supported in the cur-
rent MPLAB XC16 standard C libraries. Fixed-point variables may be displayed via
(s)printf by casting them to the appropriate floating point representation (double
for _Fract, long double for long _Fract and _Accum) and then displaying the
value in that format. To scan a fixed-point number via (s)scanf, first scan it as the
appropriate double or long double floating point number and then cast the value
obtained to the desired fixed-point type.

The fixed point functions described in section 4.1.7 of N1169 are not provided in the
current MPLAB XC16 standard C libraries.

Fixed point constants, with suffixes of k (K) and r (R), as described in section 4.1.5 of
N1169, are supported by the MPLAB XC16 C compiler.

TABLE 9-3: ROUNDING MODES

Mode Description

Truncation Truncate signed result - round toward -saturation

Conventional Round signed result to nearest, ties toward +saturation

Convergent Round signed result to nearest, ties to even
DS50002071G-page 171 2012-2018 Microchip Technology Inc.

Fixed-Point Arithmetic Support
9.7 MIXING C AND ASSEMBLY LANGUAGE CODE

The MPLAB XC16 C compiler generates fixed-point code that assumes that certain
16-bit device resources are managed by the compiler's start-up and run-time code.
Hand-written assembly code built into the same program could interfere with the state
of the CPU assumed by the code the compiler generates.

MPLAB XC16 programs may contain both fixed-point C and assembly language code
that utilizes 16-bit device intrinsic fixed-point capabilities directly, but in order for these
two kinds of code to inter-operate safely, the compiler must save certain dsPIC regis-
ters around calls to assembly language functions that may change their state. The C
compiler can be instructed to do so by providing prototypes for assembly language
functions for which this is necessary. These prototypes should specify the
save(CORCON) attribute for the target assembly language function, as described in
Section 13.2.2 “Function Attributes.” Programs constructed in this manner will operate
correctly, at the expense of some state saves and restores around calls to the indicated
assembly routines.
 2012-2018 Microchip Technology Inc. DS50002071G-page 172

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 10. Memory Allocation and Access
10.1 INTRODUCTION

There are two broad groups of RAM-based variables: auto/parameter variables, which
are allocated to some form of stack, and global/static variables, which are positioned
freely throughout the data memory space. The memory allocation of these two groups
is discussed separately in the following sections.

• Address Spaces

• Variables In Data Space Memory

• Variables in Program Space

• Parallel Master Port Access

• External Memory Access

• Extended Data Space Access

• Dataflash Memory Access

• Dual Partition Memory Access

• Packing Data Stored in Flash

• Allocation of Variables to Registers

• Variables in EEPROM Data Space

• Dynamic Memory Allocation

• Co-resident Applications

• Memory Models
 2012-2018 Microchip Technology Inc. DS50002071G-page 173

Memory Allocation and Access
10.2 ADDRESS SPACES

The 16-bit devices are a combination of traditional PIC® Microcontroller (MCU) fea-
tures (peripherals, Harvard architecture, RISC) and new DSP capabilities (dsPIC DSC
devices). These devices have two distinct memory regions:

• Program Memory - contains executable code and optionally constant data.

• Data Memory - contains external variables, static variables, the system stack and
file registers. Data memory consists of near data, which is memory in the first 8
KB of the data memory space and far data, which is in the upper 56 KB of data
memory space.

Although the program and data memory regions are distinctly separate, the dsPIC and
PIC24 families of processors contain hardware support for accessing data from within
program Flash using a hardware feature that is commonly called Program Space Visi-
bility (PSV). More detail about how PSV works can be found in device data sheets or
Family Reference Manuals. See Section 10.3 “Variables In Data Space Memory.” and
Section 14.8.2 “PSV Usage with Interrupt Service Routines.”

Briefly, the architecture allows the mapping of one 32K page of Flash into the upper
32K of the data address space via the Special Function Register (SFR) PSVPAG.
Devices that support Extended Data Space (EDS) map using the DSRPAG register
instead. It is also possible to map Flash and other areas, see Section 10.7 “Extended
Data Space Access.”

By default the compiler only supports direct access to one single PSV page, referred
to as the auto_psv space. In this model, 16-bit data pointers can be used. However,
on larger devices this can make it difficult to manage large amounts of constant data
stored in Flash.

The extensions presented here allow the definition of a variable as being a ‘managed’
PSV variable. This means that the compiler will manipulate both the offset (within a
PSV page) and the page itself. As a consequence, data pointers must be 32 bits. The
compiler will probably generate more instructions than the single PSV page model, but
that is the price being paid to buy more flexibility and shorter coding time to access
larger amounts of data in Flash.
 2012-2018 Microchip Technology Inc. DS50002071G-page 174

MPLAB® XC16 C Compiler User’s Guide
10.3 VARIABLES IN DATA SPACE MEMORY

Most variables are ultimately positioned into the data space memory. The exceptions
are non-auto variables which are qualified as const and may be placed in the pro-
gram memory space.

Due to the fundamentally different way in which auto variables and non-auto vari-
ables are allocated memory, they are discussed separately. To use the C language ter-
minology, these two groups of variables are those with ‘automatic storage duration’ and
those with ‘permanent storage duration’, respectively.

In terms of memory allocation, variables are allocated space based on whether it is an
auto or not; hence the grouping in the following sections.

10.3.1 Auto and Non-Auto Variables vs. Local and Global Variables

The terms “local” and “global” are commonly used to describe variables, but are not
defined by the language standard. The term “local variable” is often taken to mean a
variable which has scope inside a function and “global variable” is one which has scope
throughout the entire program. However, the C language has three common scopes:
block, file (i.e., internal linkage) and program (i.e., external linkage). So using only two
terms to describe these can be confusing.

For example, a static variable defined outside a function has scope only in that file,
so it is not globally accessible, but it can be accessed by more than one function inside
that file, so it is not local to any one function either.

10.3.2 Non-Auto Variable Allocation and Access

Non-auto (static and external) variables have permanent storage duration and
are located by the compiler into the data space memory. The compiler will also allocate
non-auto const-qualified variables (see Section 8.9.1 “Const Type Qualifier.”) into
the data space memory if the constants-in-data memory model is selected; otherwise,
they are located in program memory.

10.3.2.1 DEFAULT ALLOCATION OF NON-AUTO VARIABLES

The compiler considers several categories of static and external variables which
all relate to the value which the variable should contain at the time the program begins.
That is, those that should be cleared at program startup (uninitialized variables), those
that should hold a non-zero value (initialized variables), and those that should not be
altered at all during program startup (persistent variables). Those objects qualified as
const are usually assigned an initial value since they are read-only. If they are not
assigned an initial value, they are grouped with the other uninitialized variables.

Data placed in RAM may be initialized at startup by copying initialized values from pro-
gram memory.
DS50002071G-page 175 2012-2018 Microchip Technology Inc.

Memory Allocation and Access
10.3.2.2 STATIC VARIABLES

All static variables have permanent storage duration, even those defined inside a
function which are “local static” variables. Local static variables only have scope in
the function or block in which they are defined, but unlike auto variables, their memory
is reserved for the entire duration of the program. Thus they are allocated memory like
other non-auto variables. Static variables may be accessed by other functions via
pointers since they have permanent duration.

Variables which are static are guaranteed to retain their value between calls to a
function, unless explicitly modified via a pointer.

Variables which are static and which are initialized only have their initial value
assigned once during the program’s execution. Thus, they may be preferable over ini-
tialized auto objects which are assigned a value every time the block in which they are
defined begins execution. Any initialized static variables are initialized in the same way
as other non-auto initialized objects by the runtime startup code, see
Section 5.4.2 “Startup and Initialization.”

10.3.2.3 NON-AUTO VARIABLE SIZE LIMITS

The compiler option -mlarge-arrays allows you to define and access arrays larger
than 32K. You must ensure that there is enough space to allocate such an array by
nominating a memory space large enough to contain such an object.

Using this option will have some effect on how code is generated as it effects the defi-
nition of the size_t type, increasing it to an unsigned long int. If used as a global
option, this will affect many operations used in indexing (making the operation more
complex). Using this option locally may effect how variables can be accessed. With
these considerations in mind, using large arrays require careful planning. This section
discusses some techniques for its use.

Two things occur when the -mlarge-arrays option is selected:

1. The compiler generates code in a different way for accessing arrays.

2. The compiler defines the size_t type to be unsigned long int.

Item 1 can have a negative effect on code size, if used throughout the whole program.
It is possible to only compile a single module with this option and have it work, but there
are limitations which will be discussed shortly.

Item 2 affects the calling convention when external functions receive or return objects
of type size_t. The compiler provides libraries built to handle a larger size_t and
these objects will be selected automatically by the linker (provided they exist).

Mixing -mlarge-arrays and normal-sized arrays together is relatively straightfor-
ward and might be the best way to make use of this feature. There are a few usage
restrictions: functions defined in such a module should not call external routines that
use size_t, and functions defined in such a module should not receive size_t as a
parameter.

For example, one could define a large array and an accessor function which is then
used by other code modules to access the array. The benefit is that only one module
needs to be compiled with -mlarge-array with the defect that an accessor is
required to access the array. This is useful in cases where compiling the whole program
with -mlarge-arrays will have negative effect on code size and speed.
 2012-2018 Microchip Technology Inc. DS50002071G-page 176

MPLAB® XC16 C Compiler User’s Guide
A code example for this would be:

file1.c

 /* to be compiled -mlarge-arrays */
 __prog__ int array1[48000] __attribute__((space(prog)));
 __prog__ int array2[48000] __attribute__((space(prog)));

 int access_large_array(__prog__ int *array, unsigned long index) {
 return array[index];
 }

file2.c

 /* to be compiled without -mlarge-arrays */
 extern __prog__ int array1[] __attribute__((space(prog)));
 extern __prog__ int array2[] __attribute__((space(prog)));

 extern int access_large_array(__prog__ int *array,
 unsigned long index);

 main() {
 fprintf(stderr,"Answer is: %d\n", access_large_array(array1,
 39543));
 fprintf(stderr,"Answer is: %d\n", access_large_array(array2,
 16));
 }

10.3.2.4 CHANGING NON-AUTO VARIABLE ALLOCATION

The compiler arranges for data to be placed into sections, depending on the memory
model used and whether or not the data is initialized, as described in
Section 10.2 “Address Spaces.” When modules are combined at link time, the linker
determines the starting addresses of the various sections based on their attributes.

Cases may arise when a specific variable must be located at a specific address, or
within some range of addresses. The easiest way to accomplish this is by using the
address attribute, described in Chapter 7. “Differences Between MPLAB XC16 and
ANSI C.” For example, to locate variable Mabonga at address 0x1000 in data memory:

int __attribute__ ((address(0x1000))) Mabonga = 1;

A group of common variables may be allocated into a named section, complete with
address specifications:

int __attribute__ ((section("mysection"), address(0x1234))), foo;

10.3.2.5 DATA MEMORY ALLOCATION MACROS

Macros that may be used to allocate space in data memory are discussed below. There
are two types: those that require an argument and those that do not.

The following macros require an argument N that specifies alignment. N must be a
power of two, with a minimum value of 2.

#define _XBSS(N) __attribute__((space(xmemory), aligned(N)))
#define _XDATA(N) __attribute__((space(xmemory), aligned(N)))
#define _YBSS(N) __attribute__((space(ymemory), aligned(N)))
#define _YDATA(N) __attribute__((space(ymemory), aligned(N)))
#define _EEDATA(N) __attribute__((space(eedata), aligned(N)))

For example, to declare an uninitialized array in X memory that is aligned to a 32-byte
address:

int _XBSS(32) xbuf[16];
DS50002071G-page 177 2012-2018 Microchip Technology Inc.

Memory Allocation and Access
To declare an initialized array in EEPROM Data (EEData) space without special
alignment:

int _EEDATA(2) table1[] = {0, 1, 1, 2, 3, 5, 8, 13, 21};

The following macros do not require an argument. They can be used to locate a
variable in persistent data memory or in near data memory.

#define _PERSISTENT __attribute__((persistent))
#define _NEAR __attribute__((near))

For example, to declare two variables that retain their values across a device Reset:

int _PERSISTENT var1,var2;

10.3.3 Auto Variable Allocation and Access

This section discusses allocation of auto variables (those with automatic storage dura-
tion). This also includes function parameter variables, which behave like auto vari-
ables, as well as temporary variables defined by the compiler.

The auto (short for automatic) variables are the default type of local variable. Unless
explicitly declared to be static, a local variable will be made auto. The auto key-
word may be used if desired.

auto variables, as their name suggests, automatically come into existence when a
block is executed and then disappear once the block exits. Since they are not in exis-
tence for the entire duration of the program, there is the possibility to reclaim memory
they use when the variables are not in existence and allocate it to other variables in the
program.

Typically such variables are stored on some sort of a data stack, which can easily allo-
cate then deallocate memory as required by each function. The stack is discussed in
Section 10.3.3.1 “Software Stack.”

The the standard qualifiers: const and volatile may both be used with auto vari-
ables and these do not affect how they are positioned in memory. This implies that a
local const-qualified object is still an auto object and as such, will be allocated
memory on the stack, not in the program memory like with non-auto const objects.

10.3.3.1 SOFTWARE STACK

The dsPIC DSC device dedicates register W15 for use as a software Stack Pointer. All
processor stack operations, including function calls, interrupts and exceptions, use the
software stack. The stack grows upward, towards higher memory addresses.

The dsPIC DSC device also supports stack overflow detection. If the Stack Pointer
Limit register, SPLIM, is initialized, the device will test for overflow on all stack opera-
tions. If an overflow should occur, the processor will initiate a stack error exception. By
default, this will result in a processor Reset. Applications may also install a stack error
exception handler by defining an interrupt function named _StackError. See Chapter
14. “Interrupts.” for details.

The C run-time startup module initializes the Stack Pointer (W15) and the Stack Pointer
Limit register during the startup and initialization sequence. The initial values are
normally provided by the linker, which allocates the largest stack possible from unused
data memory. The location of the stack is reported in the link map output file.
Applications can ensure that at least a minimum-sized stack is available with the
--stack linker command-line option. See the MPLAB® XC16 Assembler, Linker and
Utilities User’s Guide (DS50002106) for details.
 2012-2018 Microchip Technology Inc. DS50002071G-page 178

MPLAB® XC16 C Compiler User’s Guide
Alternatively, a stack of specific size may be allocated with a user-defined section from
an assembly source file. In the following example, 0x100 bytes of data memory are
reserved for the stack:

 .section *,data,stack
 .space 0x100

The linker will allocate an appropriately sized section and initialize __SP_init and
__SPLIM_init so that the run-time startup code can properly initialize the stack. Note
that since this is a normal assembly code, section attributes such as address may be
used to further define the stack. Please see the MPLAB® XC16 Assembler, Linker and
Utilities User’s Guide (DS50002106) for more information.

10.3.3.2 THE C STACK USAGE

The C compiler uses the software stack to:

• Allocate automatic variables

• Pass arguments to functions

• Save the processor status in interrupt functions

• Save function return address

• Store temporary results

• Save registers across function calls

The run-time stack grows upward from lower addresses to higher addresses. The
compiler uses two working registers to manage the stack:

• W15 – This is the Stack Pointer (SP). It points to the top of stack which is defined
to be the first unused location on the stack.

• W14 – This is the Frame Pointer (FP). It points to the current function’s frame.
Each function, if required, creates a new frame at the top of the stack from which
automatic and temporary variables are allocated. The compiler option
-fomit-frame-pointer can be used to restrict the use of the FP.

FIGURE 10-1: STACK AND FRAME POINTERS

The C run-time startup modules in libpic30-omf.a initialize the Stack Pointer W15
to point to the bottom of the stack and initialize the Stack Pointer Limit register to point
to the top of the stack. The stack grows up and if it should grow beyond the value in the
Stack Pointer Limit register, then a stack error trap will be taken. The user may initialize
the Stack Pointer Limit register to further restrict stack growth.

Stack grows
toward
greater
addresses

SP (W15)

FP (W14)Function Frame
DS50002071G-page 179 2012-2018 Microchip Technology Inc.

Memory Allocation and Access
The following diagrams illustrate the steps involved in calling a function. Executing a
CALL or RCALL instruction pushes the return address onto the software stack. See
Figure 10-2.

FIGURE 10-2: CALL OR RCALL

The called function (callee) can now allocate space for its local context (Figure 10-3).

FIGURE 10-3: CALLEE SPACE ALLOCATION

Stack grows
toward
greater
addresses

SP (W15)

FP (W14)

Return addr [23:16]

Return addr [15:0]

Parameter 1

:

Parameter n-1

Parameter n

Caller Frame

Stack grows
toward
greater
addresses

SP (W15)

FP (W14)Local Variables

Return addr [15:0]

Parameter 1

:

Parameter n-1

Parameter n

Caller Frame

Return addr [23:16]

and Temporaries

Previous FP
 2012-2018 Microchip Technology Inc. DS50002071G-page 180

MPLAB® XC16 C Compiler User’s Guide
Any callee-saved registers that are used in the function are pushed (Figure 10-4).

FIGURE 10-4: PUSH CALLEE-SAVED REGISTERS

10.3.3.3 AUTO VARIABLE SIZE LIMITS

If a program requires large objects that should not be accessible to the entire program,
consider leaving them as local objects, but using the static specifier. Such variables
are still local to a function, but are no longer auto and are allocated permanent storage
which is not in the software stack.

The auto objects are subject to the similar constraints as non-auto objects in terms
of maximum size, but they are allocated to the software stack rather than fixed memory
locations. Section 10.3.2.3 “Non-Auto Variable Size Limits.” which describes defining
and using large arrays is also applicable to auto objects.

10.3.4 Changing Auto Variable Allocation

As auto variables are dynamically allocated space in the software stack, using the
address attribute or other mechanisms to have them allocated at a non-default
location is not permitted.

Stack grows
toward
greater
addresses

SP (W15)

FP (W14)

Callee-Saved

Return addr [15:0]

Parameter 1

:

Parameter n-1

Parameter n

Caller Frame

Return addr [23:16]

Registers

Previous FP

Local Variables
and Temporaries

[W14+n] accesses
local context

[W14-n] accesses

function parameters
stack-based
DS50002071G-page 181 2012-2018 Microchip Technology Inc.

Memory Allocation and Access
10.4 VARIABLES IN PROGRAM SPACE

The 16-bit core families of processors contain hardware support for accessing data
from within program Flash using a hardware feature that is commonly called Program
Space Visibility (PSV). More detail about how PSV works can be found in device data
sheets or Family Reference Manuals. See Section 10.4.1 “Allocation and Access of
Program Memory Objects.” and Section 14.8.2 “PSV Usage with Interrupt Service
Routines.”

The architecture allows the mapping of one 32K page of Flash into the upper 32K of
the data address space via the Special Function Register (SFR) PSVPAG or DSRPAG.
By default, the compiler only supports direct access to one single PSV page, referred
to as the auto_psv space. In this model, 16-bit data pointers can be used. However,
this can make it difficult to manage large amounts of constant data stored in Flash on
larger devices.

When the option -mconst-in-code is enabled, const-qualified variables that are
not auto are placed in program memory. Any auto variables qualified const are
placed on the stack along with other auto variables.

Any const-qualified (auto or non-auto) variable will always be read-only and any
attempt to write to these in your source code will result in an error being issued by the
compiler.

A const object is usually defined with initial values, as the program cannot write to
these objects at runtime. However this is not a requirement. An uninitialized const
object is allocated space along with other uninitialized RAM variables, but is still
read-only. Here are examples of const object definitions.

const char IOtype = ’A’; // initialized const object
const char buffer[10]; // I reserve memory in RAM

See Chapter 16. “Mixing C and Assembly Code.” for the equivalent assembly symbols
that are used to represent const-qualified variables in program memory.

10.4.1 Allocation and Access of Program Memory Objects

There are many objects that are allocated to program memory by the compiler. The fol-
lowing sections indicate those objects and how they are allocated to their final memory
location by the compiler and how they are accessed.

10.4.1.1 STRING AND CONST OBJECTS

By default, the compiler will automatically arrange for strings and const-qualified
initialized variables to be allocated in the auto_psv section, which is mapped into the
PSV window. Specify the -mconst-in-data option to direct the compiler not to use
the PSV window and these objects will be allocated along with other RAM-based
variables.

In the default memory model, the PSV page is fixed to one page which is represented
by the auto_psv memory space. Accessing the single auto PSV page is efficient as
no page manipulation is required. Additional Flash may be accessed using the
techniques introduced in section Section 10.4.2.1 “Managed PSV Access.”
 2012-2018 Microchip Technology Inc. DS50002071G-page 182

MPLAB® XC16 C Compiler User’s Guide
10.4.1.2 CONST-QUALIFIED VARIABLES IN SECURE FLASH

const-qualified variables with initializers can be supported in secure Flash segments
using PSV constant sections managed by the compiler. For example:

const int __attribute__((boot)) time_delay = 55;

If the const qualifier was omitted from the definition of time_delay, this statement
would be rejected with an error message. (Initialized variables in secure RAM are not
supported).

Since the const qualifier has been specified, variable time_delay can be allocated
in a PSV constant section that is owned by the boot segment. It is also possible to
specify the PSV constant section explicitly with the space(auto_psv) attribute:

int __attribute__((boot,space(auto_psv))) bebop = 20;

Pointer variables initialized with string literals require special processing. For example:

char * const foo __attribute__((boot)) = "eek";

The compiler will recognize that string literal "eek" must be allocated in the same PSV
constant section as pointer variable foo.

Regardless of whether you have selected the constants-in-code or constants-in-data
memory model, the compiler will create and manage PSV constant sections as needed
for secure segments. Support for user-managed PSV sections is maintained through
an object compatibility model explained below.

Upon entrance to a boot or secure function, PSVPAG will be set to the correct value.
This value will be restored after any external function call.

10.4.1.3 STRING LITERALS AS ARGUMENTS

In addition to being used as initializers, string literals may also be used as function
arguments. For example:

myputs("Enter the Dragon code:\n");

Here allocation of the string literal depends on the surrounding code. If the statement
appears in a boot or secure function, the literal will be allocated in a corresponding PSV
constant section. Otherwise it will be placed in general (non-secure) memory,
according to the constants memory model.

Recall that data stored in a secure segment cannot be read by any other segment. For
example, it is not possible to call the standard C library function puts() with a string
that has been allocated in a secure segment. Therefore literals which appear as func-
tion arguments can only be passed to functions in the same security segment. This is
also true for objects referenced by pointers and arrays. Simple scalar types such as
char, int, and float, which are passed by value, may be passed to functions in
different segments.
DS50002071G-page 183 2012-2018 Microchip Technology Inc.

Memory Allocation and Access
10.4.2 Access of Objects in Program Memory

Allocating objects to program memory and accessing them are considered as two sep-
arate issues. The compiler requires that you qualify variables to indicate how they are
accessed. You can choose to have the compiler manage access of these objects, or
do this yourself, which can be more efficient, but more complex.

10.4.2.1 MANAGED PSV ACCESS

The compiler introduces several new qualifiers (or more specifically, CV-qualifiers).
Like a const volatile qualifier, the new qualifiers can be applied to objects or
pointer targets. These qualifiers are:

• __psv__ for accessing objects that do not cross a PSV boundary, such as those
allocated in space(auto_psv) or space(psv)

• __prog__ for accessing objects that may cross a PSV boundary, specifically
those allocated in space(prog), but it may be applied to any object in Flash

• __eds__ for accessing objects that may be in Flash or the extended data space
(for devices with > 32K of RAM), see __eds__ in Section 10.7 “Extended Data
Space Access.”.

Typically there is no need to specify __psv__ or __prog__ for an object placed in
space(auto_psv).

Defining a variable in a compiler managed Flash space is accomplished by:

 __psv__ unsigned int Flash_variable __attribute__((space(psv)));

Reading from the variable now will cause the compiler to generate code that adjusts
the appropriate PSV page SFR as necessary to access the variable correctly. These
qualifiers can equally decorate pointers:

 __psv__ unsigned int *pFlash;

produces a pointer to something in PSV, which can be assigned to a managed PSV
object in the normal way. For example:

 pFlash = &Flash_variable;

10.4.2.2 OBJECT COMPATIBILITY MODEL

Since functions in secure segments set PSVPAG to their respective psv constant sec-
tions, a convention must be established for managing multiple values of the PSVPAG
register. In previous versions of the compiler, a single value of PSVPAG was set during
program startup if the default constants-in-code memory model was selected. The
compiler relied upon that preset value for accessing const variables and string literals,
as well as any variables specifically nominated with space(auto_psv).

MPLAB XC16 provides support for multiple values of PSVPAG. Variables declared with
space(auto_psv) may be combined with secure segment constant variables and/or
managed psv variables in the same source file. Precompiled objects that assume a
single, pre-set value of PSVPAG are link-compatible with objects that define secure
segment psv constants or managed psv variables.

Even though PSVPAG is considered to be a compiler-managed resource, there is no
change to the function calling conventions.
 2012-2018 Microchip Technology Inc. DS50002071G-page 184

MPLAB® XC16 C Compiler User’s Guide
10.4.2.3 ISR CONSIDERATIONS

A data access using managed PSV pointers is definitely not atomic, meaning it can
take several instructions to complete the access. Care should be taken if an access
should not be interrupted.

Furthermore an Interrupt Service Routine (ISR) never really knows what the current
state of the PSVPAG register will be. Unfortunately the compiler is not really in any
position to determine whether or not this is important in all cases.

The compiler will make the simplifying assumption that the writer of the interrupt service
routine will know whether or not the automatic, compiler managed PSVPAG is required
by the ISR. This is required to access any constant data in the auto_psv space or any
string literals or constants when the default -mconst-in-code option is selected.
When defining an interrupt service routine, it is best to specify whether or not it is
necessary to assert the default setting of the PSVPAG SFR.

This is achieved by adding a further attribute to the interrupt function definition:

• auto_psv - the compiler will set the PSVPAG register to the correct value for
accessing the auto_psv space, ensuring that it is restored when exiting the ISR

• no_auto_psv - the compiler will not set the PSVPAG register

For example:

 void __attribute__((interrupt, no_auto_psv)) _T1Interrupt(void) {
 IFS0bits.T1IF = 0;
 }

The choice is provided so that, if you are especially conscious of interrupt latency, you
may select the best option. Saving and setting the PSVPAG will consume approximately
3 cycles at the entry to the function and one further cycle to restore the setting upon
exit from the function.

Note that boot or secure interrupt service routines will use a different setting of the
PSVPAG register for their constant data.

10.4.3 Size Limitations of Program Memory Variables

Arrays of any type (including arrays of aggregate types) can be qualified const and
placed in the program memory. So too can structure and union aggregate types, see
Section 8.6 “Structures and Unions.” These objects can often become large in size and
may affect memory allocation.

For objects allocated in a compiler-managed PSV window (auto_psv space) the total
memory available for allocation is limited by the size of the PSV window itself. Thus, no
single object can be larger than the size of the PSV window and all such objects must
not total larger than this window.

The variables allocated to program memory are subject to similar constraints as data
space objects in terms of maximum size, but they are allocated to the larger program
space rather than data space memory. Section 10.3.2.3 “Non-Auto Variable Size Lim-
its.” which describes defining and using large arrays is also applicable to objects in
program space memory.
DS50002071G-page 185 2012-2018 Microchip Technology Inc.

Memory Allocation and Access
10.4.4 Changing Program Memory Variable Allocation

The variables allocated to program memory can, to some degree, be allocated to alter-
nate memory locations. Section 10.3.2.4 “Changing Non-Auto Variable Allocation.”
describes alternate addresses and sections also applicable to objects in the program
memory space. Note that you cannot use the address attribute for objects that are in
the auto_psv space.

The space attribute can be used to define variables that are positioned for use in the
PSV window. To specify certain variables for allocation in the compiler-managed PSV
space, use attribute space(auto_psv). To allocate variables for PSV access in a
section not managed by the compiler, use attribute space(psv). For more information
on these attributes, see Chapter 7. “Differences Between MPLAB XC16 and ANSI C.”.

For example, to place a variable in the auto_psv space, which will cause storage to
be allocated in Flash in a convenient way to be accessed by a single PSVPAG setting,
specify:

 unsigned int Flash_variable __attribute__((space(auto_psv)));

Other user spaces that relate to Flash are available:

• space(psv) - a PSV space that the compiler does not access automatically

• space(prog) - any location in Flash that the compiler does not access automatically

Note that both the psv and auto_psv spaces are appropriately blocked or aligned so
that a single PSVPAG setting is suitable for accessing the entire variable.

For more on PSV usage, see the MPLAB® XC16 Assembler, Linker and Utilities User’s
Guide (DS50002106).
 2012-2018 Microchip Technology Inc. DS50002071G-page 186

MPLAB® XC16 C Compiler User’s Guide
10.5 PARALLEL MASTER PORT ACCESS

Some devices contain a Parallel Master Port (PMP) peripheral which allows the con-
nection of various memory and non-memory devices directly to the device. Access to
the peripheral is controlled via a selection of peripherals. More information about this
peripheral can be found in your device Family Reference Manual (FRM) or data sheet.

The peripheral can require a substantial amount of configuration, depending upon the
type and brand of memory device that is connected. This configuration is not done
automatically by the compiler.

The extensions presented here allow the definition of a variable as PMP. This means
that the compiler will communicate with the PMP peripheral to access the variable.

To use this feature:

• Initialize PMP - define the initialization function: void __init_PMP(void)
• Declare a New Memory Space

• Define Variables within PMP Space

10.5.1 Initialize PMP

The PMP peripheral requires initialization before any access can be properly pro-
cessed. Consult the appropriate documentation for the device you are interfacing to
and the data sheet for 16-bit device you are using.

If PMP is used, the toolsuite will call void __init_PMP(void) during normal C
run-time initialization. If a customized initialization is being used, please ensure that this
function is called.

This function should make the necessary settings in the PMMODE and PMCON SFRs.
In particular:

• The peripheral should not be configured to generate interrupts:
PMMODEbits.IRQM = 0

• The peripheral should not be configured to generate increments:
PMMODEbits.INCM = 0
The compiler will modify this setting during run-time as needed.

• The peripheral should be initialized to 16-bit mode:
PMMODEbits.MODE16 = 1
The compiler will modify this setting during run-time as needed.

• The peripheral should be configured for one of the MASTER modes:
PMMODEbits.MODE = 2 or PMMODEbits.MODE = 3

• Set the wait-states PMMODEbits.WAITB, PMMODEbits.WAITM, and
PMMODEbits.WAITE as appropriate for the device being connected.

• The PMCON SFR should be configured as appropriate making sure that the chip
select function bits PMCONbits.CSF match the information communicated to the
compiler when defining memory spaces.

A partial example might be:

 void __init_PMP(void) {
 PMMODEbits.IRQM = 0;
 PMMODEbits.INCM = 0;
 PMMODEbits.MODE16 = 1;
 PMMODEbits.MODE = 3;
 /* device specific configuration of PMMODE and PMCCON follows */
 }

Note: PMP attributes are not supported on devices with EPMP. Use Extended
Data Space (EDS) instead. See Section 10.7 “Extended Data Space
Access.”
DS50002071G-page 187 2012-2018 Microchip Technology Inc.

Memory Allocation and Access
10.5.2 Declare a New Memory Space

The compiler toolsuite requires information about each additional memory being
attached via the PMP. In order for the 16-bit device linker to be able to properly assign
memory, information about the size of memory available and the number of
chip-selects needs to be provided.

In Chapter 7. “Differences Between MPLAB XC16 and ANSI C.” the new pmp memory
space was introduced. This attribute serves two purposes: declaring extended memory
spaces and assigning C variable declarations to external memory (this will be covered
in the next subsection).

Declaring an extended memory requires providing the size of the memory. You may
optionally assign the memory to a particular chip-select pin; if none is assigned it will
be assumed that chip-selects are not being used. These memory declarations look like
normal external C declarations:

 extern int external_PMP_memory
__attribute__((space(pmp(size(1024),cs(0)))));

Above we defined an external memory of size 1024 bytes and there are no
chip-selects. The compiler only supports one PMP memory unless chip-selects are
being used:

 extern int PMP_bank1 __attribute__((space(pmp(size(1024),cs(1)))));
 extern int PMP_bank2 __attribute__((space(pmp(size(2048),cs(2)))));

Above PMP_bank1 will be activated using chip-select pin 1 (address pin 14 will be
asserted when accessing variables in this bank). PMP_bank2 will be activated using
chip-select pin 2 (address pin 15 will be asserted).

Note that when using chip-selects, the largest amount of memory is 16 Kbytes per
bank. It is recommended that the declaration appear in a common header file so that
the declaration is available to all translation units.

10.5.3 Define Variables within PMP Space

The pmp space attribute is also used to assign individual variables to the space. This
requires that the memory space declaration to be present. Given the declarations in the
previous subsection, the following variable declarations can be made:

 __pmp__ int external_array[256]
 __attribute__((space(pmp(external_PMP_memory))));

external_array will be allocated in the previously declared memory
external_PMP_memory. If there is only one PMP memory, and chip-selects are not
being used, it is possible to leave out the explicit reference to the memory. It is good
practice, however, to always make the memory explicit which would lead to code that
is more easily maintained.

Note that, like managed PSV pointers, we have qualified the variable with a new type
qualifier __pmp__. When attached to a variable or pointer it instructs the compiler to
generate the correct sequence for access via the PMP peripheral.

Now that a variable has been declared it may be accessed using normal C syntax. The
compiler will generate code to correctly communicate with the PMP peripheral.
 2012-2018 Microchip Technology Inc. DS50002071G-page 188

MPLAB® XC16 C Compiler User’s Guide
10.6 EXTERNAL MEMORY ACCESS

Not all of Microchip’s 16-bit devices have a parallel master port peripheral (see
Section 10.5 “Parallel Master Port Access.”), and not all memories are suitable for
attaching to the PMP (serial memories sold by Microchip, for example). The toolsuite
provides a more general interface to, what is known as, external memory, although, as
will be seen, the memory does not have to be external.

Like PMP access, the tool-chain needs to learn about external memories that are being
attached. Unlike PMP access, however, the compiler does not know how to access
these memories. A mechanism is provided by which an application can specify how
such memories should be accessed.

Addresses of external objects are all 32 bits in size. The largest attachable memory is
64K (16 bits); the other 16 bits in the address is used to uniquely identify the memory.
A total of 64K (16 bits) of these may be (theoretically) attached.

To use this feature, work through the following sections.

10.6.1 Declare a New Memory Space

This is very similar to declaring a new memory space for PMP access.

The 16-bit toolsuite requires information about each external memory. In order for
16-bit device linker to be able to properly assign memory, information about the size of
memory available and, optionally the origin of the memory, needs to be provided.

In Chapter 7. “Differences Between MPLAB XC16 and ANSI C.” the external mem-
ory space was introduced. This attribute serves two purposes: declaring extended
memory spaces and assigning C variable declarations to external memory (this will be
covered in the next subsection).

Declaring an extended memory requires providing the size of the memory. You may
optionally specify an origin for this memory; if none is specified 0x0000 will be
assumed.

 extern int external_memory
__attribute__((space(external(size(1024)))));

Above an external memory of size 1024 bytes is defined. This memory can be uniquely
identified by its given name of external_memory.

10.6.2 Define Variables Within an External Space

The external space attribute is also used to assign individual variables to the space.
This requires that the memory space declaration to be present. Given the declarations
in the previous subsection, the following variable declarations can be made:

 __external__ int external_array[256]
 __attribute__((space(external(external_memory))));

external_array will be allocated in the previous declared memory
external_memory.

Note that, like managed PSV objects, we have qualified the variable with a new type
qualifier __external__. When attached to a variable or pointer target, it instructs the
compiler to generate the correct sequence to access these objects.

Once an external memory variable has been declared, it may be accessed using nor-
mal C syntax. The compiler will generate code to access the variable via special helper
functions that the programmer must define. These are covered in the next subsection.
DS50002071G-page 189 2012-2018 Microchip Technology Inc.

Memory Allocation and Access
10.6.3 Define How to Access Memory Spaces

References to variables placed in external memories are controlled via the use of sev-
eral helper functions. Up to five functions may be defined for reading and five for writ-
ing. One of these functions is a generic routine and will be called if any of the other four
are not defined but are required. If none of the functions are defined, the compiler will
generate an error message. A brief example will be presented in the next subsection.
Generally, defining the individual functions will result in more efficient code generation.

10.6.3.1 FUNCTIONS FOR READING

read_external

void __read_external(unsigned int address,
 unsigned int memory_space,
 void *buffer,
 unsigned int len)

This function is a generic Read function and will be called if one of the next functions
are required but not defined. This function should perform the steps necessary to fill
len bytes of memory in the buffer from the external memory named memory_space
starting at address address.

read_external8

unsigned char __read_external8(unsigned int address,
 unsigned int memory_space)

Read 8 bits from external memory space memory_space starting from address
address. The compiler would like to call this function if trying to access an 8-bit sized
object.

read_external16

unsigned int __read_external16(unsigned int address,
 unsigned int memory_space)

Read 16 bits from external memory space memory_space starting from address
address. The compiler would like to call this function if trying to access an 16-bit sized
object.

read_external32

unsigned long __read_external32(unsigned int address,
 unsigned int memory_space)

Read 32 bits from external memory space memory_space starting from address
address. The compiler would like to call this function if trying to access a 32-bit sized
object, such as a long or float type.

read_external64

unsigned long long __read_external64(unsigned int address,
 unsigned int memory_space)

Read 64 bits from external memory space memory_space starting from address
address. The compiler would like to call this function if trying to access a 64-bit sized
object, such as a long long or long double type.
 2012-2018 Microchip Technology Inc. DS50002071G-page 190

MPLAB® XC16 C Compiler User’s Guide
10.6.3.2 FUNCTIONS FOR WRITING

write_external

void __write_external(unsigned int address,
 unsigned int memory_space,
 void *buffer,
 unsigned int len)

This function is a generic Write function and will be called if one of the next functions
are required but not defined. This function should perform the steps necessary to write
len bytes of memory from the buffer to the external memory named memory_space
starting at address address.

write_external8

void __write_external8(unsigned int address,
 unsigned int memory_space,
 unsigned char data)

Write 8 bits of data to external memory space memory_space starting from address
address. The compiler would like to call this function if trying to write an 8-bit sized
object.

write_external16

void __write_external16(unsigned int address,
 unsigned int memory_space,
 unsigned int data)

Write 16 bits of data to external memory space memory_space starting from address
address. The compiler would like to call this function if trying to write an 16-bit sized
object.

write_external32

void __write_external32(unsigned int address,
 unsigned int memory_space,
 unsigned long data)

Write 32 bits of data to external memory space memory_space starting from address
address. The compiler would like to call this function if trying to write a 32-bit sized
object, such as a long or float type.

write_external64

void __write_external64(unsigned int address,
 unsigned int memory_space,
 unsigned long long data)

Write 64 bits of data to external memory space memory_space starting from address
address. The compiler would like to call this function if trying to write a 64-bit sized
object, such as a long long or long double type.
DS50002071G-page 191 2012-2018 Microchip Technology Inc.

Memory Allocation and Access
10.6.4 An External Example

The following snippets of example come from a working example (in the Examples
folder.)

This example implements, using external memory, addressable bit memory. In this
case each bit is stored in real data memory, not off chip. The code will define an
external memory of 512 units and map accesses using the appropriate read and
write function to one of 64 bytes in local data memory.

First the external memory is defined:

 extern unsigned int bit_memory
__attribute__((space(external(size(512)))));

Next appropriate read and write functions are defined. These functions will make use
of an array of memory that is reserved in the normal way.

 static unsigned char real_bit_memory[64];
 unsigned char __read_external8(unsigned int address,
 unsigned int memory_space) {
 if (memory_space == bit_memory) {
 /* an address within our bit memory */
 unsigned int byte_offset, bit_offset;
 byte_offset = address / 8;
 bit_offset = address % 8;
 return (real_bit_memory[byte_offset] >> bit_offset) & 0x1;
 } else {
 fprintf(stderr,"I don't know how to access memory space: %d\n",
 memory_space);
 }
 return 0;
 }
 void __write_external8(unsigned int address,
 unsigned int memory_space,
 unsigned char data) {
 if (memory_space == bit_memory) {
 /* an address within our bit memory */
 unsigned int byte_offset, bit_offset;
 byte_offset = address / 8;
 bit_offset = address % 8;
 real_bit_memory[byte_offset] &= (~(1 << bit_offset));
 if (data & 0x1) real_bit_memory[byte_offset] |=
 (1 << bit_offset);
 } else {
 fprintf(stderr,"I don't know how to access memory space: %d\n",
 memory_space);
 }
 }

These functions work in a similar fashion:

• if accessing bit_memory, then

- determine the correct byte offset and bit offset

- read or write the appropriate place in the real_bit_memory
• otherwise access another memory (whose access is unknown)
 2012-2018 Microchip Technology Inc. DS50002071G-page 192

MPLAB® XC16 C Compiler User’s Guide
With the two major pieces of the puzzle in place, generate some variables and
accesses:

 __external__ unsigned char bits[NUMBER_OF_BITS]
 __attribute__((space(external(bit_memory))));
 // inside main
 __external__ unsigned char *bit;
 bit = bits;
 for (i = 0; i < 512; i++) {
 printf("%d ",*bit++);
 }

Apart from the __external__ CV-qualifiers, ordinary C statements can be used to
define and access variables in the external memory space.

10.7 EXTENDED DATA SPACE ACCESS

Qualifying a variable or pointer target as being accessible through the extended data
space window allows you to easily access objects that have been placed in a variety of
different memory spaces. These include: space(data) (and its subsets), eds,
space(eedata), space(prog), space(psv), space(auto_psv), and on some
devices space(pmp). Not all devices support all memory spaces.

To use this feature:

• declare an object in an appropriate memory space

• qualify the object with the __eds__ qualifier

For example:

 __eds__ int var_a __attribute__((space(prog)));
 __eds__ int var_b [10] __attribute__((eds));
 __eds__ int *var_c;
 __eds__ int *__eds__ var_d __attribute__((space(psv)));

var_a - declares an int in Flash that is automatically accessed

var_b - declares an array of ints, located in eds; the elements of the array are auto-
matically accessed

var_c - declares a pointer to an int, where the destination may exist in any one of the
memory spaces supported by Extended Data Space pointers and will be automatically
accessed upon dereference; the pointer itself must live in a normal data space

var_d - declares a pointer to an int, where the destination may exist in any one of the
memory spaces supported by Extended Data Space pointers and will be automatically
accessed upon dereference; the pointer value exists in Flash and is also automatically
accessed.

The compiler will automatically assert the page attribute to scalar variable declarations;
this allows the compiler to generate more efficient code when accessing larger data
types. Remember, scalar variables do not include structures or arrays. To force paging
of a structure or array, please manually use the page attribute and the compiler will
prevent the object from crossing a page boundary.

For read access to __eds__ qualified variables, the compiler will automatically manip-
ulate the PSVPAG or DSRPAG register as appropriate. For devices that support
extended data space memory, the compiler will also manipulate the DSWPAG register.

Note: Some devices use DSRPAG to represent extended read access to Flash or
the extended data space (EDS).
DS50002071G-page 193 2012-2018 Microchip Technology Inc.

Memory Allocation and Access
10.8 DATAFLASH MEMORY ACCESS

The language tool cannot generate access to this kind of memory as it can generate
access to other on-board memories. Please see your device data sheet or Family
Reference Manual (FRM) for suggested access routines.

The compiler defines the following features to assist in defining and using dataflash
memory that is available on certain devices.

1. The tool defines a new memory space, space(dataflash), which may be
applied as an attribute to any variable.

2. The tool provides a new builtin to determine the address of a properly attributed
dataflash variable:

 int foo[5] __attribute__((space(dataflash))) = { 1,2,3,4,5 };
 offset = __builtin_dataflashoffset(&foo);

10.9 DUAL PARTITION MEMORY ACCESS

The language tool chain supports a new option that directs the compiler and linker to
target a single partition in a dual partition device. This option will constrain the output
text to be contained within one panel and is selectable from with the MPLAB X IDE or
from the command line using --partition n.

10.10 PACKING DATA STORED IN FLASH

The 16-bit core families use a 24-bit Flash word size. The architecture supports the
mapping of areas of Flash into the data space, as discussed in Section 10.4 “Variables
in Program Space.” Unfortunately this mapping is only 16 bits wide to fit in with data
space dimensions.

The compiler supports using the upper byte of Flash via packed storage. Use of this
upper byte can offer a code-size savings for large structures, but this is more expensive
to access. The type-qualifier __pack_upper_byte added to a declaration indicates
that the variable should be placed into Flash memory and use the upper byte. Unlike
other qualifiers in use with MPLAB XC16 C Compiler, such as __psv__, this qualifier
combines placement and access control.

10.10.1 Packed Example

__pack_upper_byte char message[] = "Hello World!\n";

will allocate the message string into Flash memory in such a way that the upper byte
of memory contains valid data.

There are no restrictions to the types of __pack_upper_byte data. The compiler will
'pack' structures as if __attribute__((packed)) had also been specified. This
further eliminates wasted space due to padding.

Like other extended type qualifiers, the __pack_upper_byte type qualifier enforces
a unique addressing space on the compiler; therefore, it is important to maintain this
qualifier when passing values as parameters. Do not be tempted to cast away the
__pack_upper_byte qualifier – it won't work.
 2012-2018 Microchip Technology Inc. DS50002071G-page 194

MPLAB® XC16 C Compiler User’s Guide
10.10.2 Usage Considerations

When using this qualifier, consider the following:

1. The following attributes are not compatible with __pack_upper_byte:

2. __pack_upper_byte data is best used for large data sets that do not need to
be accessed frequently or that do not have important access timing.

3. Sequential accesses to __pack_upper_byte data objects will improve access
performance.

4. A version of mempcy is defined in libpic30.h, and its prototype is:
void _memcpy_packed(void *dst, __pack_upper_byte void *src,
 unsigned int len);

5. The following style of declaration is invalid for packed memory:
__pack_upper_byte char *message = "Hello World!\n";
Here, message is a pointer to __pack_upper_byte space, but the string "Hello
World!\n", is in normal const data space, which is not compatible with
__pack_upper_byte. There is no standard C way to specify a different source
address space for the literal string. Instead declare message as an object (such
as an array declaration in Section 10.10.1 “Packed Example.”).

6. The TBLPAG SFR may be corrupted during access of a packed variable.

10.10.3 Addressing Information

The upper byte of Flash does not have a unique address, which is a requirement for C.
Therefore, the compiler has to invent one. The tool chain remaps Flash to linear
addresses for all bytes starting with program address word 0. This means that the real
Flash address of a __pack_upper_byte variable will not be the address that is stored
in a pointer or symbol table. The Flash address can be determined by:

1. word offset = address div 3

2. program address offset = word offset * 2

3. byte offset = address mod 3

The byte to reference is located in Flash at program address offset.

The remapped addressing scheme for __pack_upper_byte objects prevents the
compiler from accepting fixed address requests.

boot near reverse

dma noload xmemory

eedata psv, auto_psv ymemory
DS50002071G-page 195 2012-2018 Microchip Technology Inc.

Memory Allocation and Access

DD
10.11 ALLOCATION OF VARIABLES TO REGISTERS

You may specify a fixed register assignment for a particular C variable. It is not
recommended that this be done.

10.12 VARIABLES IN EEPROM DATA SPACE

The compiler provides some convenience macro definitions to allow placement of data
into the device’s EEPROM Data (EEData) area. This can be done quite simply:

int _EEDATA(2) user_data[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

user_data will be placed in the EEData space (space(eedata)) reserving 10 words
with the given initial values.

The device provides two ways for programmers to access this area of memory. The first
is via the program space visibility window. The second is by using special machine
instructions (TBLRDx).

10.12.1 Accessing EEData via User Managed PSV

The compiler normally manages the PSV window to access constants stored in
program memory. If this is not the case, the PSV window can be used to access
EEData memory.

To use the PSV window:

• The psv page register must be set to the appropriate address for the program
memory to be accessed. For EEData this will be 0xFF, but it is best to use the
__builtin_psvpage() function.

• In some devices, the PSV window should also be enabled by setting the PSV bit
in the CORCON register. If this bit is not set, uses of the PSV window will always
read 0x0000.

EXAMPLE 10-1: EEDATA ACCESS VIA PSV

#include <xc.h>
int main(void) {
 PSVPAG = __builtin_psvpage(&user_data);
 CORCONbits.PSV = 1;

 /* ... */

 if (user_data[2]) ;/* do something */

 }

These steps need only be done once. Unless psv page is changed, variables in
EEData space may be read by referring to them as normal C variables, as shown in the
example.

Note: Using variables specified in compiler-allocated registers - fixed registers -
is usually unnecessary and occasionally dangerous. This feature is
deprecated and not recommended.

Note: This access model is not compatible with the compiler-managed PSV
(-mconst-in-code) model. You should be careful to prevent conflict.
 2012-2018 Microchip Technology Inc. DS50002071G-page 196

MPLAB® XC16 C Compiler User’s Guide
10.12.2 Accessing EEData Using TBLRDx Instructions

The TBLRDx instructions are not directly supported by the compiler, but they can be
used via inline assembly or compiler built-in functions. Like PSV accesses, a 23-bit
address is formed from an SFR value and the address encoded as part of the instruc-
tion. To access the same memory as given in the previous example, the following code
may be used:

To use the TBLRDx instructions:

• The TBLPAG register must be set to the appropriate address for the program
memory to be accessed. For EEData, this will be 0x7F, but it is best to use the
__builtin_tblpage() function.

• The TBLRDx instruction can be accessed from an __asm__ statement or through
one of the __builtin_tblrd functions; refer to the “dsPIC30F/33F
Programmer’s Reference Manual” (DS70157) for information on this instruction.

EXAMPLE 10-2: EEDATA ACCESS VIA TABLE READ

#include <xc.h>
#define eedata_read(src, offset, dest) { \
 register int eedata_addr; \
 register int eedata_val; \
 \
 eedata_addr = __builtin_tbloffset(&src)+offset; \
 eedata_val = __builtin_tblrdl(eedata_addr); \
 dest = eedata_val; \
 }

char user_data[] __attribute__((space(eedata))) = { /* values */ };

int main(void) {
 int value;

 TBLPAG = __builtin_tblpage(&user_data);

 eedata_read(user_data,2*sizeof(user_data[0]), value);
 if (value) ; /* do something */

 }
DS50002071G-page 197 2012-2018 Microchip Technology Inc.

Memory Allocation and Access
10.12.3 Accessing EEData Using Managed Access

On most device the EEData space is part of the program address space. Therefore
EEData can be accessed automatically using one of the managed access qualifiers
__psv__ or __eds__.

EXAMPLE 10-3: USING MANAGED PSV ACCESS

#include <xc.h>

__eds__ char user_data[] __attribute__((space(eedata))) = { /* values
*/ };

int main(void) {
 int value;

 value = user_data[0];
 if (value) ; /* do something */
}

10.12.4 Additional Sources of Information

Device Family Reference Manuals (FRMs) have an excellent discussion on using the
Flash program memory and EEPROM data memory provided. These manuals also
have information on run-time programming of both types of memory.

There are many library routines provided with the compiler. See the 16-Bit Language
Tools Libraries Reference Manual (DS50001456) manual for more information.

10.13 DYNAMIC MEMORY ALLOCATION

The C run-time heap is an uninitialized area of data memory that is used for dynamic
memory allocation using the standard C library dynamic memory management
functions, calloc, malloc and realloc. If you do not use any of these functions,
then you do not need to allocate a heap. By default, a heap is not created.

If you do want to use dynamic memory allocation, either directly, by calling one of the
memory allocation functions, or indirectly, by using a standard C library input/output
function, then a heap must be created. A heap is created by specifying its size on the
linker command line, using the --heap linker command-line option. An example of
allocating a heap of 512 bytes using the command line is:

xc16-gcc -T pdevice.gld foo.c -Wl,--heap=512

The linker allocates the heap immediately below the stack.

You can use a standard C library input/output function to create open files (fopen). If
you open files, then the heap size must include 40 bytes for each file that is simultane-
ously open. If there is insufficient heap memory, then the open function will return an
error indicator. For each file that should be buffered, 4 bytes of heap space is required.
If there is insufficient heap memory for the buffer, then the file will be opened in unbuff-
ered mode. The default buffer can be modified with setvbuf or setbuf.

10.14 CO-RESIDENT APPLICATIONS

Co-resident applications are programs that share the same physical memory space on
an MCU or DSC. These applications are linked together in such a way that they can
share the device memory resource.

See the “MPLAB® XC16 Assembler, Linker and Utilities User’s Guide” (DS50002106),
Section 10.15 “Co-resident Application Linking,” for details.
 2012-2018 Microchip Technology Inc. DS50002071G-page 198

MPLAB® XC16 C Compiler User’s Guide
10.15 MEMORY MODELS

The compiler supports several memory models. Command-line options are available
for selecting the optimum memory model for your application, based on the specific
device that you are using and the type of memory usage.

TABLE 10-1: MEMORY MODEL COMMAND-LINE OPTIONS

The command-line options apply globally to the modules being compiled. Individual
variables and functions can be declared as near, far or in eds to better control the
code generation. For information on setting individual variable or function attributes,
see Section 8.11 “Variable Attributes.” and Section 13.2.1 “Function Specifiers.”.

Option Memory Definition Description

-msmall-data Up to 8 KB of data memory.
This is the default.

Permits use of PIC18 like instructions
for accessing data memory.

-msmall-scalar Up to 8 KB of data memory.
This is the default.

Permits use of PIC18 like instructions
for accessing scalars in data memory.

-mlarge-data Greater than 8 KB of data
memory.

Uses indirection for data references.

-msmall-code Up to 32 kWords of program
memory. This is the default.

Function pointers will not go through a
jump table. Function calls use RCALL
instruction.

-mlarge-code Greater than 32 kWords of
program memory.

Function pointers might go through a
jump table. Function calls use CALL
instruction.

-mconst-in-data Constants located in data
memory.

Values copied from program memory
by startup code.

-mconst-in-code Constants located in program
memory. This is the default.

Values are accessed via Program
Space Visibility (PSV) data window.

-mconst-in-aux-
flash

Constants in auxiliary Flash. Values are accessed via Program
Space visibility window.
DS50002071G-page 199 2012-2018 Microchip Technology Inc.

Memory Allocation and Access
10.15.1 Near or Far Data

If variables are allocated in the near data space, the compiler is often able to generate
better (more compact) code than if the variables are not allocated in near data. If all
variables for an application can fit within the 8 KB of near data, then the compiler can
be requested to place them there by using the default -msmall-data command line
option when compiling each module. If the amount of data consumed by scalar types
(no arrays or structures) totals less than 8 KB, the default -msmall-scalar, com-
bined with -mlarge-data, may be used. This requests that the compiler arrange to
have just the scalars for an application allocated in the near data space.

If neither of these global options is suitable, then the following alternatives are
available.

1. It is possible to compile some modules of an application using the
-mlarge-data or -mlarge-scalar command-line options. In this case, only
the variables used by those modules will be allocated in the far data section. If
this alternative is used, then care must be taken when using externally defined
variables. If a variable that is used by modules compiled using one of these
options is defined externally, then the module in which it is defined must also be
compiled using the same option, or the variable declaration and definition must
be tagged with the far attribute.

2. If the command-line options -mlarge-data or -mlarge-scalar have been
used, then an individual variable may be excluded from the far data space by
tagging it with the near attribute.

3. Instead of using command-line options, which have module scope, individual
variables may be placed in the far data section by tagging them with the far
attribute.

The linker will produce an error message if all near variables for an application cannot
fit in the 8K near data space.
 2012-2018 Microchip Technology Inc. DS50002071G-page 200

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 11. Operators and Statements
11.1 INTRODUCTION

The MPLAB XC16 C Compiler supports all the ANSI operators. The exact results of
some of these are implementation defined and this behavior is fully documented in
Appendix A. “Implementation-Defined Behavior.” The following sections illustrate code
operations that are often misunderstood as well as additional operations that the com-
piler is capable of performing.

• Built-In Functions

• Integral Promotion

11.2 BUILT-IN FUNCTIONS

Built-in functions give the C programmer access to assembler operators or machine
instructions that are currently only accessible using inline assembly, but are sufficiently
useful that they are applicable to a broad range of applications. Built-in functions are
coded in C source files syntactically like function calls, but they are compiled to
assembly code that directly implements the function and usually do not involve function
calls or library routines.

For more on built-in functions, see Appendix G. “Built-in Functions.”

11.3 INTEGRAL PROMOTION

When there is more than one operand to an operator, they typically must be of exactly
the same type. The compiler will automatically convert the operands, if necessary, so
they do have the same type. The conversion is to a “larger” type so there is no loss of
information; however, the change in type can cause different code behavior to what is
sometimes expected. These form the standard type conversions.

Prior to these type conversions, some operands are unconditionally converted to a
larger type, even if both operands to an operator have the same type. This conversion
is called integral promotion and is part of Standard C behavior. The compiler performs
these integral promotions where required, and there are no options that can control or
disable this operation. If you are not aware that the type has changed, the results of
some expressions are not what would normally be expected.

Integral promotion is the implicit conversion of enumerated types, signed or
unsigned varieties of char, short int or bit-field types to either signed int or
unsigned int. If the result of the conversion can be represented by an signed int,
then that is the destination type, otherwise the conversion is to unsigned int.

Consider the following example.

unsigned char count, a=0, b=50;
if(a - b < 10)
 count++;

The unsigned char result of a - b is 206 (which is not less than 10), but both a and
b are converted to signed int via integral promotion before the subtraction takes
place. The result of the subtraction with these data types is -50 (which is less than 10)
and hence the body of the if() statement is executed.
 2012-2018 Microchip Technology Inc. DS50002071G-page 201

Operators and Statements
If the result of the subtraction is to be an unsigned quantity, then apply a cast. For
example:

if((unsigned int)(a - b) < 10)
 count++;

The comparison is then done using unsigned int, in this case, and the body of the
if() would not be executed.

Another problem that frequently occurs is with the bitwise compliment operator, ~. This
operator toggles each bit within a value. Consider the following code.

unsigned char count, c;
c = 0x55;
if(~c == 0xAA)
 count++;

If c contains the value 0x55, it is often assumed that ~c will produce 0xAA. However,
the result is 0xFFAA. So, the comparison in the above example would fail. The compiler
may be able to issue a mismatched comparison error to this effect in some
circumstances. Again, a cast could be used to change this behavior.

The consequence of integral promotion as illustrated above is that operations are not
performed with char -type operands, but with int -type operands. However there are
circumstances when the result of an operation is identical regardless of whether the
operands are of type char or int. In these cases, the compiler will not perform the
integral promotion so as to increase the code efficiency. Consider the following
example.

unsigned char a, b, c;
a = b + c;

Strictly speaking, this statement requires that the values of b and c should be promoted
to unsigned int, the addition performed, the result of the addition cast to the type of
a, and then the assignment can take place. Even if the result of the unsigned int
addition of the promoted values of b and c was different to the result of the unsigned
char addition of these values without promotion, after the unsigned int result was
converted back to unsigned char, the final result would be the same. If an 8-bit
addition is more efficient than a 16-bit addition, the compiler will encode the former.

If in the above example, the type of a was unsigned int, then integral promotion
would have to be performed to comply with the ANSI C standard.
 2012-2018 Microchip Technology Inc. DS50002071G-page 202

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 12. Register Usage
12.1 INTRODUCTION

Certain registers play import roles in the C runtime environment. Therefor creating
code concerning these registers requires knowledge about their use by the compiler.

• Register Variables

• Changing Register Contents

12.2 REGISTER VARIABLES
Register variables use one or more working registers, as shown in Table 12-1.

TABLE 12-1: REGISTER CONVENTIONS

Variable Working Register

char, signed char, unsigned char W0-W13, and W14, if not used as a Frame Pointer

short, signed short, unsigned short W0-W13, and W14, if not used as a Frame Pointer

int, signed int, unsigned int W0-W13, and W14, if not used as a Frame Pointer

void * (or any pointer) W0-W13, and W14, if not used as a Frame Pointer

long, signed long, unsigned long A pair of contiguous registers, the first of which is a register from
the set {W0, W2, W4, W6, W8, W10, W12}

long long, signed long long,
unsigned long long

A quadruplet of contiguous registers, the first of which is a register
from the set {W0, W4, W8}. Successively higher-numbered
registers contain successively more significant bits.

float A pair of contiguous registers, the first of which is a register from
the set {W0, W2, W4, W6, W8, W10, W12}

double(1) A pair of contiguous registers, the first of which is a register from
the set {W0, W2, W4, W6, W8, W10, W12}

long double A quadruplet of contiguous registers, the first of which is a register
from the set {W0, W4, W8}

structure 1 contiguous register per 2 bytes in the structure

_Fract
_Sat _Fract

W0-W13, and W14, if not used as a Frame Pointer

long _Fract
_Sat long _Fract

A pair of contiguous registers, the first of which is a register from
the set {W0, W2, W4, W6, W8, W10, W12}

_Accum
_Sat _Accum

Three contiguous registers where the first register starts in the set
{W0, W4, W8, W12}; W12 is included only if W14 is not used as a
frame pointer.

Note 1: double is equivalent to long double if -fno-short-double is used.
 2012-2018 Microchip Technology Inc. DS50002071G-page 203

Register Usage
12.3 CHANGING REGISTER CONTENTS

The assembly generated from C source code by the compiler will use certain registers
that are present on the 16-bit device. Most importantly, the compiler assumes that noth-
ing other than code it generates can alter the contents of these registers. So if the
assembly loads a register with a value and no subsequent code generation requires
this register, the compiler will assume that the contents of the register are still valid later
in the output sequence.

The registers that are special and which are managed by the compiler are: W0-W15,
RCOUNT, STATUS (SR), PSVPAG and DSRPAG. If fixed point support is enabled, the
compiler may allocate A and B, in which case the compiler may adjust CORCON.

The state of these register must never be changed directly by C code, or by any assem-
bly code in-line with C code. The following example shows a C statement and in-line
assembly that violates these rules and changes the ZERO bit in the STATUS register.

#include <xc.h>

void badCode(void)
{
 asm (“mov #0, w8”);
 WREG9 = 0;
}

The compiler is unable to interpret the meaning of in-line assembly code that is encoun-
tered in C code. Nor does it associate a variable mapped over an SFR to the actual
register itself. Writing to an SFR register using either of these two methods will not flag
the register as having changed and may lead to code failure.
 2012-2018 Microchip Technology Inc. DS50002071G-page 204

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 13. Functions
13.1 INTRODUCTION

The compiler supports C code functions and handles assembly code functions, as dis-
cussed in the following topics:

• Writing Functions

• Function Size Limits

• Allocation of Function Code

• Changing the Default Function Allocation

• Inline Functions

• Memory Models

• Function Call Conventions

13.2 WRITING FUNCTIONS

Implementation and special features associated with functions are discussed in the fol-
lowing sections.

13.2.1 Function Specifiers

The only specifier that has any effect on functions is static.

A function defined using the static specifier only affects the scope of the function,
i.e., limits the places in the source code where the function may be called. Functions
that are static may only be directly called from code in the file in which the function
is defined. This specifier does not change the way the function is encoded.
 2012-2018 Microchip Technology Inc. DS50002071G-page 205

Functions
13.2.2 Function Attributes

The keyword __attribute__ allows you to specify special attributes when making a
declaration. This keyword is followed by an attribute specification inside double
parentheses. The following attributes are currently supported for functions:

• address (addr)
• alias ("target")
• auto_psv, no_auto_psv
• boot
• const
• context
• deprecated
• far
• format (archetype, string-index, first-to-check)
• format_arg (string-index)
• interrupt [([save(list)] [, irq(irqid)] [,
altirq(altirqid)] [, preprologue(asm)])]

• keep
• naked
• near
• no_instrument_function
• noload
• noreturn
• optimize
• priority(n)
• round(mode)
• save(list)
• section ("section-name")
• secure
• shadow
• shared
• unsupported("message")
• unused
• user_init
• weak

You may also specify attributes with __ (double underscore) preceding and following
each keyword (e.g., __shadow__ instead of shadow). This allows you to use them in
header files without being concerned about a possible macro of the same name.

Multiple attributes may be specified in a declaration by separating them by commas
within the double parentheses or by immediately following an attribute declaration with
another attribute declaration.

address (addr)
The address attribute specifies an absolute address for the function.

void __attribute__ ((address(0x100))) foo() {
...
}

Alternatively, you may define the address in the function prototype:

void foo() __attribute__ ((address(0x100)));
 2012-2018 Microchip Technology Inc. DS50002071G-page 206

MPLAB® XC16 C Compiler User’s Guide
alias ("target")
The alias attribute causes the declaration to be emitted as an alias for another
symbol, which must be specified.

Use of this attribute results in an external reference to target, which must be resolved
during the link phase.

auto_psv, no_auto_psv

The auto_psv attribute, when combined with the interrupt attribute, will cause the
compiler to generate additional code in the function prologue to set the psv page SFR
to the correct value for accessing space(auto_psv) (or constants in the con-
stants-in-code memory model) variables. Use this option when using 24-bit pointers
and an interrupt may occur while the psv page has been modified and the interrupt rou-
tine, or a function it calls, uses an auto_psv variable. Compare this with no_au-
to_psv.

The no_auto_psv attribute, when combined with the interrupt attribute, will cause
the compiler to not generate additional code for accessing space(auto_psv) (or
constants in the constants-in-code memory model) variables. Use this option if none of
the conditions under auto_psv hold true.

If neither auto_psv nor no_auto_psv option is specified for an interrupt routine, the
compiler will issue a warning and assume auto_psv.

boot

This attribute directs the compiler to allocate a function in the boot segment of program
Flash.

For example, to declare a protected function:

void __attribute__((boot)) func();

An optional argument can be used to specify a protected access entry point within the
boot segment. The argument may be a literal integer in the range 0 to 31 (except 16),
or the word unused. Integer arguments correspond to 32 instruction slots in the seg-
ment access area, which occupies the lowest address range of each secure segment.
The value 16 is excluded because access entry 16 is reserved for the secure segment
interrupt vector. The value unused is used to specify a function for all of the unused
slots in the access area.

Access entry points facilitate the creation of application segments from different ven-
dors that are combined at run time. They can be specified for external functions as well
as locally defined functions.

For example:

/* an external function that we wish to call */
extern void __attribute__((boot(3))) boot_service3();
/* local function callable from other segments */
void __attribute__((secure(4))) secure_service4()
{
 boot_service3();
}

DS50002071G-page 207 2012-2018 Microchip Technology Inc.

Functions
To specify a secure interrupt handler, use the boot attribute in combination with the
interrupt attribute:

void __attribute__((boot,interrupt)) boot_interrupts();

When an access entry point is specified for an external secure function, that function
need not be included in the project for a successful link. All references to that function
will be resolved to a fixed location in Flash, depending on the security model selected
at link time.

When an access entry point is specified for a locally defined function, the linker will
insert a branch instruction into the secure segment access area. The exception is for
access entry 16, which is represented as a vector (i.e, an instruction address) rather
than an instruction. The actual function definition will be located beyond the access
area; therefore the access area will contain a jump table through which control can be
transferred from another security segment to functions with defined entry points.

Automatic variables are owned by the enclosing function and do not need the boot
attribute. They may be assigned initial values, as shown:

void __attribute__((boot)) chuck_cookies()
{
 int hurl;
 int them = 55;
 char *where = "far";
 splat(where);
 /* ... */
}

Note that the initial value of where is based on a string literal which is allocated in the
PSV constant section .boot_const. The compiler will set the psv page SFR to the
correct value upon entrance to the function. If necessary, the compiler will also restore
it after the call to splat().

const

Many functions do not examine any values except their arguments, and have no effects
except the return value. Such a function can be subject to common subexpression
elimination and loop optimization just as an arithmetic operator would be. These
functions should be declared with the attribute const. For example:

int square (int) __attribute__ ((const int));

says that the hypothetical function square is safe to call fewer times than the program
states.

Note that a function that has pointer arguments and examines the data pointed to must
not be declared const. Likewise, a function that calls a non-const function usually
must not be const. It does not make sense for a const function to have a void return
type.

Note: In order to allocate functions with the boot or secure attribute, memory
for the boot and/or secure segment must be reserved. This can be accom-
plished by setting configuration words in source code, or by specifying
linker command options. For more information, see Chapter 8.8, “Options
that Specify CodeGuard Security Features,” in the MPLAB® XC16
Assembler, Linker and Utilities User’s Guide (DS50002106).
If attributes boot or secure are used, and memory is not reserved, then a
link error will result.
 2012-2018 Microchip Technology Inc. DS50002071G-page 208

MPLAB® XC16 C Compiler User’s Guide
context

The context attribute may be used to associate the current routine with an alternate
register set. Typically this is used with interrupt service routines to reduce the amount
of context that must be preserved, which will improve interrupt latency.

deprecated

See Section 8.11 “Variable Attributes.” for information on the deprecated attribute.

far

The far attribute tells the compiler that the function may be located too far away to use
short call instruction.

format (archetype, string-index, first-to-check)
The format attribute specifies that a function takes printf, scanf or strftime
style arguments which should be type-checked against a format string. For example,
consider the declaration:

extern int
my_printf (void *my_object, const char *my_format, ...)
 __attribute__ ((format (printf, 2, 3)));

This causes the compiler to check the arguments in calls to my_printf for
consistency with the printf style format string argument my_format.

The parameter archetype determines how the format string is interpreted, and should
be one of printf, scanf or strftime. The parameter string-index specifies
which argument is the format string argument (arguments are numbered from the left,
starting from 1), while first-to-check is the number of the first argument to check
against the format string. For functions where the arguments are not available to be
checked (such as vprintf), specify the third parameter as zero. In this case, the
compiler only checks the format string for consistency.

In the previous example, the format string (my_format) is the second argument of the
function my_print, and the arguments to check start with the third argument, so the
correct parameters for the format attribute are 2 and 3.

The format attribute allows you to identify your own functions that take format strings
as arguments, so that the compiler can check the calls to these functions for errors. The
compiler always checks formats for the ANSI library functions printf, fprintf,
sprintf, scanf, fscanf, sscanf, strftime, vprintf, vfprintf and
vsprintf, whenever such warnings are requested (using -Wformat), so there is no
need to modify the header file stdio.h.

format_arg (string-index)
The format_arg attribute specifies that a function takes printf or scanf style
arguments, modifies it (for example, to translate it into another language), and passes
it to a printf or scanf style function. For example, consider the declaration:

extern char *
my_dgettext (char *my_domain, const char *my_format)
 __attribute__ ((format_arg (2)));

This causes the compiler to check the arguments in calls to my_dgettext, whose
result is passed to a printf, scanf or strftime type function for consistency with
the printf style format string argument my_format.

The parameter string-index specifies which argument is the format string
argument (starting from 1).
DS50002071G-page 209 2012-2018 Microchip Technology Inc.

Functions
The format-arg attribute allows you to identify your own functions which modify
format strings, so that the compiler can check the calls to printf, scanf or
strftime function, whose operands are a call to one of your own functions.

interrupt [([save(list)] [, irq(irqid)]
[, altirq(altirqid)] [, preprologue(asm)])]
Use this option to indicate that the specified function is an interrupt handler. The compiler
will generate function prologue and epilogue sequences suitable for use in an interrupt
handler when this attribute is present. The optional parameter save specifies a list of
variables to be saved and restored in the function prologue and epilogue, respectively.
The optional parameters irq and altirq specify interrupt vector table IDs to be used.
The optional parameter preprologue specifies assembly code that is to be emitted
before the compiler-generated prologue code. See Chapter 14. “Interrupts” for a full
description, including examples.

When using the interrupt attribute, please specify either auto_psv or no_au-
to_psv. If none is specified a warning will be produced and auto_psv will be assumed.

keep

The keep attribute will prevent the linker from removing the function with the ELF linker
option --gc-sections, even if it is unused.

in C:

void __attribute__((keep)) foo(void);

in Assembly:

 .section *,code,keep
 .global _foo
_foo:
 return

naked

The naked attribute will prevent the compiler from saving or restoring any registers.
This attribute should be applied with caution as failing to save or restore registers may
cause issues. Consider using this attribute with noreturn for safety - any attempt to
return will cause a reset.

void __attribute__((naked)) func();

near

The near attribute tells the compiler that the function can be called using a more
efficient form of the call instruction.

no_instrument_function

If the command line option -finstrument-function is given, profiling function calls
will be generated at entry and exit of most user-compiled functions. Functions with this
attribute will not be so instrumented.

noload

The noload attribute indicates that space should be allocated for the function, but that
the actual code should not be loaded into memory. This attribute could be useful if an
application is designed to load a function into memory at run time, such as from a serial
EEPROM.

void bar() __attribute__ ((noload)) {
...
}

 2012-2018 Microchip Technology Inc. DS50002071G-page 210

MPLAB® XC16 C Compiler User’s Guide
noreturn

 A few standard library functions, such as abort and exit, cannot return. The com-
piler knows this automatically. Some programs define their own functions that never
return. You can declare them noreturn to tell the compiler this fact. For example:

void fatal (int i) __attribute__ ((noreturn));

void
fatal (int i)
{
 /* Print error message. */
 exit (1);
}

The noreturn keyword tells the compiler to assume that fatal cannot return. It can
then optimize without regard to what would happen if fatal ever did return. This
makes slightly better code. It also helps avoid spurious warnings of uninitialized
variables.

It does not make sense for a noreturn function to have a return type other than void.

A noreturn function will reset if it attempts to return.

optimize

Use the optimize attribute to specify different optimization options for various func-
tions within a source file. Arguments can be either numbers or strings. Numbers are
assumed to be an optimization level. Strings that begin with O are assumed to be an
optimization option. This feature can be used, for example, to have frequently executed
functions compiled with more aggressive optimization options that produce faster and
larger code, while other functions can be called with less aggressive options.

This optimization setting overrides the file or project optimization setting.

int __attribute__((optimize("-O3"))) pandora (void)
{
 if (maya > axton) return 1;
 return 0;
}

priority(n)
The priority attribute can be applied to a variable to group initializations together.
n must be between 1 and 65535, with 1 being the highest level. All initializations with
the same priority are initialized before moving onto the next priority level. Level 1 vari-
ables are initialized first and variables without a priority level are initialized last. The
attribute can also be applied to void functions (void result and argument types); in
this case the function(s) for level n will be executed immediately after all the
initializations for level n are complete.

round(mode)
The round attribute controls the rounding mode of C language fixed-point support
(_Fract, _Accum variable types) dialect code (-menable-fixed command-line
option) within a function. Specify mode as one of truncation, conventional, or conver-
gent. This attribute overrides the default rounding mode set by -menable-fixed for
C language code within the attributed function, but has no effect on functions that may
be called by that function.

save(list)
Functions declared with the save(list) attribute will direct the compiler to save and
restore the C variables expressed in list.
DS50002071G-page 211 2012-2018 Microchip Technology Inc.

Functions
section ("section-name")
Normally, the compiler places the code it generates in the .text section. Sometimes
you need additional sections or certain functions to appear in special sections. The
section attribute specifies that a function lives in a particular section. For example,
consider the declaration:

extern void foobar (void) __attribute__ ((section (".libtext")));

This puts the function foobar in the .libtext section.

The linker will allocate the saved named section sequentially. This might allow you to
ensure code is locally referent to each other, even across modules. This can ensure
that calls are near enough to each other for a more efficient call instruction.

secure

This attribute directs the compiler to allocate a function in the secure segment of
program Flash.

For example, to declare a protected function:

void __attribute__((secure)) func();

An optional argument can be used to specify a protected access entry point within the
secure segment. The argument may be a literal integer in the range 0 to 31 (except
16), or the word unused. Integer arguments correspond to 32 instruction slots in the
segment access area, which occupies the lowest address range of each secure seg-
ment. The value 16 is excluded because access entry 16 is reserved for the secure
segment interrupt vector. The value unused is used to specify a function for all of the
unused slots in the access area.

Access entry points facilitate the creation of application segments from different ven-
dors that are combined at run time. They can be specified for external functions as well
as locally defined functions. For example:

/* an external function that we wish to call */
extern void __attribute__((boot(3))) boot_service3();
/* local function callable from other segments */
void __attribute__((secure(4))) secure_service4()
{
 boot_service3();
}

To specify a secure interrupt handler, use the secure attribute in combination with the
interrupt attribute:

void __attribute__((secure,interrupt)) secure_interrupts();

When an access entry point is specified for an external secure function, that function
need not be included in the project for a successful link. All references to that function
will be resolved to a fixed location in Flash, depending on the security model selected
at link time.

Note: In order to allocate functions with the boot or secure attribute, memory
for the boot and/or secure segment must be reserved. This can be accom-
plished by setting configuration words in source code, or by specifying
linker command options. For more information, see Chapter 8.8, “Options
that Specify CodeGuard Security Features,” in the linker manual
(DS51317).
If attributes boot or secure are used, and memory is not reserved, then a
link error will result.
 2012-2018 Microchip Technology Inc. DS50002071G-page 212

MPLAB® XC16 C Compiler User’s Guide
When an access entry point is specified for a locally defined function, the linker will
insert a branch instruction into the secure segment access area. The exception is for
access entry 16, which is represented as a vector (i.e, an instruction address) rather
than an instruction. The actual function definition will be located beyond the access
area; therefore the access area will contain a jump table through which control can be
transferred from another security segment to functions with defined entry points.

Automatic variables are owned by the enclosing function and do not need the secure
attribute. They may be assigned initial values, as shown:

void __attribute__((secure)) chuck_cookies()
{
 int hurl;
 int them = 55;
 char *where = "far";
 splat(where);
 /* ... */
}

Note that the initial value of where is based on a string literal which is allocated in the
PSV constant section .secure_const. The compiler will set PSVPAG to the correct
value upon entrance to the function. If necessary, the compiler will also restore
PSVPAG after the call to splat().

shadow

The shadow attribute causes the compiler to use the shadow registers rather than the
software stack for saving registers. This attribute is usually used in conjunction with the
interrupt attribute.

void __attribute__ ((interrupt, shadow)) _T1Interrupt (void);

shared

Used with co-resident applications. The function may be used outside of the applica-
tion. A data item will be initialized at startup of any application in the co-resident set.

unsupported("message")
This attribute will display a custom message when the object is used.

int foo __attribute__((unsupported(“This object is unsupported”));

Access to foo will generate a warning message.

unused

This attribute, attached to a function, means that the function is meant to be possibly
unused. The compiler will not produce an unused function warning for this function.

user_init

The user_init attribute may be applied to any non-interrupt function with void
parameter and return types. Applying this attribute will cause default C start-up mod-
ules to call this function before the user main is executed. There is no guarantee of
ordering, so these functions cannot rely on other user_init functions having been
previously run; these functions will be called after PSV and data initialization. A
user_init may still be called by the executing program. For example:

 void __attribute__((user_init)) initialize_me(void) {
 // perform initalization sequence alpha alpha beta
 }

weak

See Section 8.11 “Variable Attributes.” for information on the weak attribute.
DS50002071G-page 213 2012-2018 Microchip Technology Inc.

Functions
13.3 FUNCTION SIZE LIMITS

For all devices, the code generated for a function may become larger than one page in
size, limited only by the available program memory. However, functions that yield code
larger than a page may not be as efficient due to longer call sequences to jump to and
call destinations in other pages. See 13.4 “Allocation of Function Code” for more
details.

13.4 ALLOCATION OF FUNCTION CODE

Code associated with functions is always placed in the program memory of the target
device. As described in Section 10.2 “Address Spaces.”, the compiler arranges for
code to be placed in the .text section, depending on the memory model used and
whether or not the data is initialized. When modules are combined at link time, the
linker determines the starting addresses of the various sections based on their attri-
butes.

13.5 CHANGING THE DEFAULT FUNCTION ALLOCATION

Cases may arise when a specific function must be located at a specific address, or
within some range of addresses. The easiest way to accomplish this is by using the
address attribute, described in Section 13.2.1 “Function Specifiers.” For example, to
locate function PrintString at address 0x8000 in program memory:

int __attribute__ ((address(0x8000))) PrintString (const char *s);

Another way to locate code is by placing the function into a user-defined section, and
specifying the starting address of that section in a custom linker script. This is done as
follows:

1. Modify the code declaration in the C source to specify a user-defined section.

2. Add the user-defined section to a custom linker script file to specify the starting
address of the section.

For example, to locate the function PrintString at address 0x8000 in program
memory, first declare the function as follows in the C source:

int __attribute__((__section__(".myTextSection")))
PrintString(const char *s);

The section attribute specifies that the function should be placed in a section named
.myTextSection, rather than the default .text section. It does not specify where
the user-defined section is to be located. That must be done in a custom linker script,
as follows. Using the device-specific linker script as a base, add the following section
definition:

.myTextSection 0x8000 :
 {
 *(.myTextSection);
 } >program

This specifies that the output file should contain a section named .myTextSection
starting at location 0x8000 and containing all input sections named.myTextSection.
Since, in this example, there is a single function PrintString in that section, then the
function will be located at address 0x8000 in program memory.
 2012-2018 Microchip Technology Inc. DS50002071G-page 214

MPLAB® XC16 C Compiler User’s Guide
13.6 INLINE FUNCTIONS

By declaring a function inline, you can direct the compiler to integrate that function’s
code into the code for its callers. This usually makes execution faster by eliminating the
function-call overhead. In addition, if any of the actual argument values are constant,
their known values may permit simplifications at compile time, so that not all of the
inline function’s code needs to be included. The effect on code size is less predictable.
Machine code may be larger or smaller with inline functions, depending on the
particular case.

To declare a function inline, use the inline keyword in its declaration, like this:

inline int
inc (int *a)
{
 (*a)++;
}

(If you are using the -traditional option or the -ansi option, write __inline__
instead of inline.) You can also make all “simple enough” functions inline with the
command-line option -finline-functions. The compiler heuristically decides
which functions are simple enough to be worth integrating in this way, based on an
estimate of the function’s size.

Certain usages in a function definition can make it unsuitable for inline substitution.
Among these usages are: use of varargs, use of alloca, use of variable-sized data,
use of computed goto and use of nonlocal goto. Using the command-line option
-Winline will warn when a function marked inline could not be substituted, and will
give the reason for the failure.

In compiler syntax, the inline keyword does not affect the linkage of the function.

When a function is both inline and static, if all calls to the function are integrated
into the caller and the function’s address is never used, then the function’s own
assembler code is never referenced. In this case, the compiler does not actually output
assembler code for the function, unless you specify the command-line option
-fkeep-inline-functions. Some calls cannot be integrated for various reasons
(in particular, calls that precede the function’s definition cannot be integrated and
neither can recursive calls within the definition). If there is a non-integrated call, then
the function is compiled to assembler code as usual. The function must also be com-
piled as usual if the program refers to its address, because that can’t be inlined. The
compiler will only eliminate inline functions if they are declared to be static and if the
function definition precedes all uses of the function.

When an inline function is not static, then the compiler must assume that there
may be calls from other source files. Since a global symbol can be defined only once
in any program, the function must not be defined in the other source files, so the calls
therein cannot be integrated. Therefore, a non-static inline function is always
compiled on its own in the usual fashion.

Note: Function inlining will only take place when the function’s definition is visible
at the call site (not just the prototype). In order to have a function inlined into
more than one source file, the function definition may be placed into a
header file that is included by each of the source files.

Note: The inline keyword will only be recognized with -finline or
optimizations enabled.
DS50002071G-page 215 2012-2018 Microchip Technology Inc.

Functions
If you specify both inline and extern in the function definition, then the definition is
used only for inlining. In no case is the function compiled on its own, not even if you
refer to its address explicitly. Such an address becomes an external reference, as if you
had only declared the function and had not defined it.

This combination of inline and extern has a similar effect to a macro. Put a function
definition in a header file with these keywords and put another copy of the definition
(lacking inline and extern) in a library file. The definition in the header file will cause
most calls to the function to be inlined. If any uses of the function remain, they will refer
to the single copy in the library.

Inline, like regular, is a suggestion and may be ignored.

13.7 MEMORY MODELS

The compiler supports several memory models. Command-line options are available
for selecting the optimum memory model for your application, based on the specific
dsPIC DSC device part that you are using and the type of memory usage.

TABLE 13-1: MEMORY MODEL COMMAND-LINE OPTIONS

The command-line options apply globally to the modules being compiled. Individual
variables and functions can be declared as near, far or eds to better control the code
generation. For information on setting individual variable or function attributes, see
Section 8.11 “Variable Attributes.” and Section 13.2.1 “Function Specifiers.”

Option Memory Definition Description

-msmall-data Up to 8 KB of data memory.
This is the default.

Permits use of PIC18 like instructions
for accessing data memory.

-msmall-scalar Up to 8 KB of data memory.
This is the default.

Permits use of PIC18 like instructions
for accessing scalars in data memory.

-mlarge-data Greater than 8 KB of data
memory.

Uses indirection for data references.

-msmall-code Up to 32 Kwords of program
memory. This is the default.

Function pointers will not go through a
jump table. Function calls use RCALL
instruction.

-mlarge-code Greater than 32 Kwords of
program memory.

Function pointers might go through a
jump table. Function calls use CALL
instruction.

-mconst-in-data Constants located in data
memory.

Values copied from program memory
by startup code.

-mconst-in-code Constants located in program
memory. This is the default.

Values are accessed via Program
Space Visibility (PSV) data window.

-mconst-in-aux-
flash

Constants in auxiliary Flash Values are accessed via Program
Space visibility window.
 2012-2018 Microchip Technology Inc. DS50002071G-page 216

MPLAB® XC16 C Compiler User’s Guide
13.7.1 Near or Far Code

Functions that are near (within a radius of 32 kWords of each other) may call each other
more efficiently than those which are not. If it is known that all functions in an applica-
tion are near, then the default -msmall-code command line option can be used when
compiling each module to direct the compiler to use a more efficient form of the function
call.

If this default option is not suitable, then the following alternatives are available:

1. It is possible to compile some modules of an application using the
-msmall-code command line option. In this case, only function calls in those
modules will use a more efficient form of the function call.

2. If the -msmall-code command-line option has been used, then the compiler
may be directed to use the long form of the function call for an individual function
by tagging it with the far attribute.

3. Instead of using command-line options, which have module scope, the compiler
may be directed to call individual functions using a more efficient form of the
function call by tagging their declaration and definition with the near attribute.

4. Group locally referent code together by using named sections or keep this code
in common translation units.

The linker will produce an error message if the function declared to be near cannot be
reached by one of its callers using a more efficient form of the function call.
DS50002071G-page 217 2012-2018 Microchip Technology Inc.

Functions
13.8 FUNCTION CALL CONVENTIONS

When calling a function:

• Registers W0-W7 are caller saved. The calling function must preserve these val-
ues before the function call if their value is required subsequently from the func-
tion call. The stack is a good place to preserve these values.

• Registers W8-W14 are callee saved. The function being called must save any of
these registers it will modify.

• Registers W0-W4 are used for function return values.

• Registers W0-W7 are used for argument transmission.

• DBRPAG/PSVPAG should be preserved if the -mconst-in-code (auto_psv)
memory model is being used.

TABLE 13-2: REGISTERS REQUIRED

Parameters are placed in the first aligned contiguous register(s) that are available. The
calling function must preserve the parameters, if required. Structures do not have any
alignment restrictions; a structure parameter will occupy registers if there are enough
registers to hold the entire structure. Function results are stored in consecutive
registers, beginning with W0.

13.8.1 Function Parameters

The first eight working registers (W0-W7) are used for function parameters.Parameters
are allocated to registers in left-to-right order, with the parameter being assigned to the
first available register that is suitably aligned.

In the following example, all parameters are passed in registers, although not in the
order that they appear in the declaration. This format allows the compiler to make the
most efficient use of the available parameter registers.

Data Type Number of Working Registers Required

char 1

int 1

short 1

pointer 1 (eds pointer requires 2)

long 2 (contiguous – aligned to even numbered register)

float 2 (contiguous – aligned to even numbered register)

double* 2 (contiguous – aligned to even numbered register)

long double 4 (contiguous – aligned to quad numbered register)

structure 1 register per 2 bytes in structure

_Fract 1

long _Fract 2 (contiguous – aligned to even numbered register)

_Accum 3 (contiguous – aligned to quad numbered register)

* double is equivalent to long double if -fno-short-double is used.
 2012-2018 Microchip Technology Inc. DS50002071G-page 218

MPLAB® XC16 C Compiler User’s Guide
EXAMPLE 13-1: FUNCTION CALL MODEL

void
params0(short p0, long p1, int p2, char p3, float p4, void *p5)
{
 /*
 ** W0 p0
 ** W1 p2
 ** W3:W2 p1
 ** W4 p3
 ** W5 p5
 ** W7:W6 p4
 */
 ...
}

The next example demonstrates how structures are passed to functions. If the
complete structure can fit in the available registers, then the structure is passed via
registers; otherwise the structure argument will be placed onto the stack.

EXAMPLE 13-2: FUNCTION CALL MODEL, PASSING STRUCTURES

typedef struct bar {
 int i;
 double d;
} bar;

void
params1(int i, bar b) {
 /*
 ** W0 i
 ** W1 b.i
 ** W5:W2 b.d
 */

}

Parameters corresponding to the ellipses (...) of a variable-length argument list are not
allocated to registers. Any parameter not allocated to registers is pushed onto the
stack, in right-to-left order.

In the next example, the structure parameter cannot be placed in registers because it
is too large. However, this does not prevent the next parameter from using a register
spot.
DS50002071G-page 219 2012-2018 Microchip Technology Inc.

Functions
EXAMPLE 13-3: FUNCTION CALL MODEL, STACK BASED ARGUMENTS

typedef struct bar {
 double d,e;
} bar;

void
params2(int i, bar b, int j) {
 /*
 ** W0 i
 ** stack b
 ** W1 j
 */
}

Accessing arguments that have been placed onto the stack depends upon whether or
not a Frame Pointer has been created. Generally the compiler will produce a Frame
Pointer (unless told not to do so), as stack-based parameters will be accessed via the
Frame Pointer register (W14). In the preceding example, b will be accessed from
W14-22. The Frame Pointer offset of negative 22 has been calculated (refer to
Figure 10-4) by removing 2 bytes for the previous FP, 4 bytes for the return address,
followed by 16 bytes for b.

When no Frame Pointer is used, the assembly programmer must know how much stack
space has been used since entry to the procedure. If no further stack space is used,
the calculation is similar to Example 13-3. b would be accessed via W15-20; 4 bytes
for the return address and 16 bytes to access the start of b.

13.8.2 Return Value

Function return values are returned in W0 for 8- or 16-bit scalars, W1:W0 for 32-bit
scalars, and W3:W2:W1:W0 for 64-bit scalars. Aggregates are returned indirectly
through W0, which is set up by the function caller to contain the address of the
aggregate value.

13.8.3 Preserving Registers Across Function Calls

The compiler arranges for registers W8-W15 to be preserved across ordinary function
calls. Registers W0-W7 are available as scratch registers. For interrupt functions, the
compiler arranges for all necessary registers to be preserved, namely W0-W15 and
RCOUNT.
 2012-2018 Microchip Technology Inc. DS50002071G-page 220

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 14. Interrupts
14.1 INTRODUCTION

Interrupt processing is an important aspect of most microcontroller applications.
Interrupts may be used to synchronize software operations with events that occur in
real time. When interrupts occur, the normal flow of software execution is suspended
and special functions are invoked to process the event. At the completion of interrupt
processing, previous context information is restored and normal execution resumes.

This chapter presents an overview of interrupt processing. The following items are
discussed:

• Interrupt Operation – An overview of how interrupts operate.

• Writing an Interrupt Service Routine – You can designate one or more C functions
as Interrupt Service Routines (ISRs) to be invoked by the occurrence of an inter-
rupt. For best performance in general, place lengthy calculations or operations
that require library calls in the main application. This strategy optimizes
performance and minimizes the possibility of losing information when interrupt
events occur rapidly.

• Specifying the Interrupt Vector – The 16-bit devices use interrupt vectors to trans-
fer application control when an interrupt occurs. An interrupt vector is a dedicated
location in program memory that specifies the address of an ISR. Applications
must contain valid function addresses in these locations to use interrupts.

• Interrupt Service Routine Context Saving – To handle returning from an interrupt
to code in the same conditional state as before the interrupt, context information
from specific registers must be saved.

• Nesting Interrupts – The time between when an interrupt is called and when the
first ISR instruction is executed is the latency of the interrupt.

• Enabling/Disabling Interrupts – How interrupt priorities are determined. Enabling
and disabling interrupt sources occurs at two levels: globally and individually.

• ISR Considerations– Sharing memory with mainline code, PSV usage with ISRs,
and calling functions within ISRs.
 2012-2018 Microchip Technology Inc. DS50002071G-page 221

Interrupts
14.2 INTERRUPT OPERATION

The compiler incorporates features allowing interrupts to be fully handled from C code.
Interrupt functions are often called ISRs.

The 16-bit devices allow interrupts to be generated from many interrupt sources. Most
sources have their own dedicated interrupt vector collated in an interrupt vector table
(IVT). Each vector consists of an address at which is found the entry point of the inter-
rupt service routine. Some of the interrupt table vector locations are for traps, which are
non-maskable interrupts which deal with erroneous operation of the device, such as an
address error.

On some devices, an alternate interrupt vector table (AIVT) is provided, which allows
independent interrupt vectors to be specified. This table can be enabled when required,
forcing ISR addresses to be read from the AIVT rather than the IVT.

Interrupts have a priority associated with them. This can be independently adjusted for
each interrupt source. When more than interrupt with the same priority are pending at
the same time, the intrinsic priority, or natural order priority, of each source comes into
play. The natural order priority is typically the same as the order of the interrupt vectors
in the IVT.

The compiler provides full support for interrupt processing in C or inline assembly code.

Interrupt code is the name given to any code that executes as a result of an interrupt
occurring. Interrupt code completes at the point where the corresponding return from
interrupt instruction is executed.

This contrasts with main-line code which, for a freestanding application, is usually the
main part of the program that executes after Reset.
 2012-2018 Microchip Technology Inc. DS50002071G-page 222

MPLAB® XC16 C Compiler User’s Guide
14.3 WRITING AN INTERRUPT SERVICE ROUTINE

Following the guidelines in this section, you can write all of your application code,
including your interrupt service routines, using only C language constructs.

All ISR code will be placed into a named section that starts with .isr. A function with
a section attribute will prepend .isr to the name given. Code compiled with
-ffunction-sections will also prepend .isr to the section name. For details, see
Section 5.7.6.2 “The -ffunction-sections Option.”

If you have created your own linker script file and that file is older than an MPLAB C30
v3.30 project, you will need to modify your linker script as per the Readme_XC16.html
file found in the docs subdirectory of the MPLAB XC16 install directory.

14.3.1 Guidelines for Writing ISRs

The following guidelines are suggested for writing ISRs:

• declare ISRs with no parameters and a void return type (mandatory)

• do not let ISRs be called by main line code (mandatory)

• do not let ISRs call other functions (recommended)

A 16-bit device ISR is like any other C function in that it can have local variables and
access global variables. However, an ISR needs to be declared with no parameters
and no return value. This is necessary because the ISR, in response to a hardware
interrupt or trap, is invoked asynchronously to the mainline C program (that is, it is not
called in the normal way, so parameters and return values don’t apply).

ISRs should only be invoked through a hardware interrupt or trap and not from other C
functions. An ISR uses the return from interrupt (RETFIE) instruction to exit from the
function rather than the normal RETURN instruction. Using a RETFIE instruction out of
context can corrupt processor resources, such as the Status register.

Finally, ISRs should avoid calling other functions. This is recommended because of
latency issues. See Section 14.6 “Nesting Interrupts.” for more information.

14.3.2 Syntax for Writing ISRs

To declare a C function as an interrupt handler, tag the function with the interrupt attri-
bute (see Section 13.2.2 “Function Attributes.” for a description of the
__attribute__ keyword).

The syntax of the interrupt attribute is:

__attribute__((interrupt [(
 [save(symbol-list)]
 [, irq(irqid)]
 [, altirq(altirqid)]
 [, preprologue(asm)]
)]
))

The interrupt attribute name and the parameter names may be written with a pair
of underscore characters before and after the name. Thus, interrupt and
__interrupt__ are equivalent, as are save and __save__.

The optional save parameter names a list of one or more variables that are to be saved
and restored on entry to and exit from the ISR. The list of names is written inside paren-
theses, with the names separated by commas.

You should arrange to save global variables that may be modified in an ISR if you do
not want the value to be exported. Global variables accessed by an ISR should be
qualified volatile.
DS50002071G-page 223 2012-2018 Microchip Technology Inc.

Interrupts
The optional irq parameter allows you to place an interrupt vector at a specific
interrupt, with the optional altirq parameter allowing you to place an interrupt vector
at a specified alternate interrupt. Each parameter requires a parenthesized interrupt ID
number. (See Section 14.4 “Specifying the Interrupt Vector.” for a list of interrupt IDs.)

The optional preprologue parameter allows you to insert assembly-language
statements into the generated code immediately before the compiler-generated
function prologue.

When using the interrupt attribute, please specify either auto_psv or
no_auto_psv. If none is specified a warning will be produced and auto_psv will be
assumed.

14.3.3 Coding ISRs

The following prototype declares function isr0 to be an interrupt handler:

void __attribute__((interrupt(auto_psv))) isr0(void);

As this prototype indicates, interrupt functions must not take parameters nor may they
return a value. The compiler arranges for all working registers to be preserved, as well
as the Status register and the Repeat Count register, if necessary. Other variables may
be saved by naming them as parameters of the interrupt attribute. For example, to
have the compiler automatically save and restore the variables, var1 and var2, use
the following prototype:

void __attribute__((interrupt(auto_psv, save(var1, var2))))
isr0(void);

To request the compiler to use the fast context save (using the push.s and pop.s
instructions), tag the function with the shadow attribute (see Section 13.2.1 “Function
Specifiers.”). For example:

void __attribute__((interrupt(auto_psv, shadow))) isr0(void);

14.3.4 Using Macros to Declare Simple ISRs

If an interrupt handler does not require any of the optional parameters of the interrupt
attribute, then a simplified syntax may be used. The following macros are defined in the
device-specific header files:

#define _ISR __attribute__((interrupt))
#define _ISRFAST __attribute__((interrupt, shadow))

For example, to declare an interrupt handler for external interrupt 0:

#include <xc.h>
void _ISR _INT0Interrupt(void);

To declare an interrupt handler for the SPI1 interrupt with fast context save:

#include <xc.h>
void _ISRFAST _SPI1Interrupt(void);
 2012-2018 Microchip Technology Inc. DS50002071G-page 224

MPLAB® XC16 C Compiler User’s Guide
14.4 SPECIFYING THE INTERRUPT VECTOR

All 16-bit devices have a primary interrupt vector table. Some 16-bit devices have a
fixed alternate vector table, some have no alternate vector table and some have an
alternate vector table which may be disabled and moved.

The alternate vector name is used when the ALTIVT bit is set in the INTCON2 register.
For devices with alternate vector tables which may be disabled and moved, AIVT
support is configured via configuration words, notably:

• AIVTDIS to enable the vector table

• BSLIM to locate the vector table

On these devices, the tool chain will inspect the values of these configuration words to
determine whether or not to allocate space and fill in the value of the alternate vector
tables. Simply specify device appropriate values for these configuration words:

 #pragma config AIVTDIS = ON
 #pragma config BSLIM = 0x1FFD

and define the alternate vectors in the normal way, i.e.:

 void __attribute__((interrupt)) _AltT1Interrupt(void) {}

Each exception vector occupies a program word. For tables of interrupt vectors by
device family, see Section 14.4.2 “Interrupt Vector Tables.”

14.4.1 Interrupt Vector Usage

To field an interrupt, a function’s address must be placed at the appropriate address in
one of the vector tables, with the function preserving any system resources that it uses.
It must return to the foreground task using a RETFIE processor instruction. Interrupt
functions may be written in C. When a C function is designated as an interrupt handler,
the compiler arranges to preserve all the system resources that the compiler uses, and
to return from the function using the appropriate instruction. The compiler can option-
ally arrange for the interrupt vector table to be populated with the interrupt function’s
address.

To arrange for the compiler to fill in the interrupt vector to point to the interrupt function,
name the function as denoted in the vector tables. See Section 14.4.2 “Interrupt Vector
Tables.” For example, the stack error vector will automatically be filled if the following
function is defined:

void __attribute__((interrupt(auto_psv))) _StackError(void);

Note the use of the leading underscore. Similarly, the alternate stack error vector will
automatically be filled if the following function is defined:

void __attribute__((interrupt(auto_psv))) _AltStackError(void);

Again, note the use of the leading underscore.

For all interrupt vectors without specific handlers, a default interrupt handler will be
installed. The default interrupt handler is supplied by the linker and simply resets the
device. An application may also provide a default interrupt handler by declaring an
interrupt function with the name _DefaultInterrupt.

Note: A device Reset is not handled through the interrupt vector table. Instead,
on device Reset, the program counter is cleared. This causes the processor
to begin execution at address zero. By convention, the linker script
constructs a GOTO instruction at that location which transfers control to the
C run-time startup module.
DS50002071G-page 225 2012-2018 Microchip Technology Inc.

Interrupts
The last nine interrupt vectors in each table do not have predefined hardware functions.
The vectors for these interrupts may be filled by using the names indicated in the vector
tables (Section 14.4.2 “Interrupt Vector Tables.”), or you may use names more appro-
priate to the application, while still filling the appropriate vector entry by using the irq
or altirq parameter of the interrupt attribute. For example, to specify that a function
should use primary interrupt vector 52, use the following:

void __attribute__((interrupt(auto_psv, irq(52)))) MyIRQ(void);

Similarly, to specify that a function should use alternate interrupt vector 53, use the fol-
lowing:

void __attribute__((interrupt(auto_psv, altirq(52)))) MyAltIRQ(void);

The irq/altirq number can be one of the interrupt request numbers 45 to 53. If the
irq parameter of the interrupt attribute is used, the compiler creates the external
symbol name __Interruptn, where n is the vector number. Therefore, the C
identifiers _Interrupt45 through _Interrupt53 are reserved by the compiler. In
the same way, if the altirq parameter of the interrupt attribute is used, the compiler
creates the external symbol name __AltInterruptn, where n is the vector number.
Therefore, the C identifiers _AltInterrupt45 through _AltInterrupt53 are
reserved by the compiler.

14.4.2 Interrupt Vector Tables

For tables of interrupt vectors by device family:

• In MPLAB X IDE, for newer versions of the compiler, open the Dashboard window
and click on the Compiler Help button.

• On the command-line, see the docs subdirectory of the MPLAB XC16 C compiler
install directory (Section 4.2 “MPLAB X IDE and Tools Installation.”). Open the
XC16MasterIndex file and click on the “Interrupt Vector Tables Reference” link.
 2012-2018 Microchip Technology Inc. DS50002071G-page 226

MPLAB® XC16 C Compiler User’s Guide
14.5 INTERRUPT SERVICE ROUTINE CONTEXT SAVING

Interrupts, by their very nature, can occur at unpredictable times. Therefore, the
interrupted code must be able to resume with the same machine state that was present
when the interrupt occurred.

To properly handle a return from interrupt, the setup (prologue) code for an ISR function
automatically saves the compiler-managed working and special function registers on
the stack for later restoration at the end of the ISR. You can use the optional save
parameter of the interrupt attribute to specify additional variables and SFRs to be
saved and restored.

14.5.1 Assembly and ISRs

In certain applications, it may be necessary to insert assembly statements into the ISR
immediately prior to the compiler-generated function prologue. For example, it may be
required that a semaphore be incremented immediately on entry to an interrupt service
routine. This can be done as follows:

void __attribute__((interrupt(auto_psv,preprologue
 ("inc _semaphore")))) isr0(void);

The context switch leads to latency in interrupt code execution, as described in
Section 14.8.3 “Latency.”

14.5.2 context Attribute

The context attribute may be applied to an interrupt service routine to inform the com-
piler that this ISR executes at a particular Interrupt Priority Level (IPL), which has also
been assigned to an alternate register set. Please see your device data sheet or Family
Reference Manual (FRM) for details on how to properly configure the device to use
alternate register sets. This feature is set up using configuration bits.

When using this attribute, it is important that the priority level of the interrupt matches
the priority level of the context that has been assigned. Changing the priority of the
interrupt service routine may cause runtime corruption.

Example of use:

 // Priority Level 7 routines will use context 1
 #pragma config CTXT1 = 7
 // T1 Interrupt uses its own context
 void __attribute__((interrupt, context)) _T1Interrupt(void);
 main() {
 // Timer 1 is configured to use priority level 7
 IPC0bits.T1IP = 7;

14.6 NESTING INTERRUPTS

The 16-bit devices support nested interrupts. Since processor resources are saved on
the stack in an ISR, nested ISRs are coded in just the same way as non-nested ones.
Nested interrupts are enabled by clearing the NSTDIS (nested interrupt disable) bit in
the INTCON1 register. Note that this is the default condition as the 16-bit device comes
out of Reset with nested interrupts enabled. Each interrupt source is assigned a priority
in the Interrupt Priority Control registers (IPCn).

An interrupt is vectored if the priority of the interrupt source is greater than the current
CPU priority level.
DS50002071G-page 227 2012-2018 Microchip Technology Inc.

Interrupts
14.7 ENABLING/DISABLING INTERRUPTS

Each interrupt source can be individually enabled or disabled. One interrupt enable bit
for each IRQ is allocated in the Interrupt Enable Control registers (IECn). Setting an
interrupt enable bit to one (1) enables the corresponding interrupt; clearing the interrupt
enable bit to zero (0) disables the corresponding interrupt. When the device comes out
of Reset, all interrupt enable bits are cleared to zero.

The safe method of enabling and disabling peripheral interrupts is to use the
__write_to_IEC() macro, which is defined in the device header files. This is helpful
because some devices require one cycle of delay for this to take effect, but some
require two. A different version of __write_to_IEC() will be generated based on
device-specific information.

In addition, the processor has a disable interrupt instruction (DISI) that can disable all
interrupts for a specified number of instruction cycles.The DISI instruction can be used
in a C program through the use of:

__builtin_disi

For example:

__builtin_disi(16);

will emit the specified DISI instruction at the point it appears in the source program. A
disadvantage of using DISI in this way is that the C programmer cannot always be
sure how the C compiler will translate C source to machine instructions, so it may be
difficult to determine the cycle count for the DISI instruction. It is possible to get around
this difficulty by bracketing the code that is to be protected from interrupts by DISI
instructions, the first of which sets the cycle count to the maximum value, and the
second of which sets the cycle count to zero. For example,

__builtin_disi(0x3FFF); /* disable interrupts */
/* ... protected C code ... */
__builtin_disi(0x0000); /* enable interrupts */

An alternative approach is to write directly to the DISICNT register to enable interrupts.
The DISICNT register may be modified only after a DISI instruction has been issued
and if the contents of the DISICNT register are not zero.

__builtin_disi(0x3FFF); /* disable interrupts */
/* ... protected C code ... */
DISICNT = 0x0000; /* enable interrupts */

For some applications, it may be necessary to disable level 7 interrupts as well. These
can only be disabled through the modification of the COROCON IPL field. The provided
support files contain some useful preprocessor macro functions to help you safely
modify the IPL value. These macros are:

SET_CPU_IPL(ipl)
SET_AND_SAVE_CPU_IPL(save_to, ipl)
RESTORE_CPU_IPL(saved_to)

For example, you may wish to protect a section of code from interrupt. The following
code will adjust the current IPL setting and restore the IPL to its previous value.

void foo(void) {
 int current_cpu_ipl;

 SET_AND_SAVE_CPU_IPL(current_cpu_ipl, 7); /* disable interrupts */
 /* protected code here */
 RESTORE_CPU_IPL(current_cpu_ipl);
}

Note: Traps, such as the address error trap, cannot be disabled. Only IRQs can
be disabled.
 2012-2018 Microchip Technology Inc. DS50002071G-page 228

MPLAB® XC16 C Compiler User’s Guide
14.8 ISR CONSIDERATIONS

The following sections describe how to ensure your interrupt code works as expected.

14.8.1 Sharing Memory with Mainline Code

Exercise caution when modifying the same variable within a main or low-priority ISR
and a high-priority ISR. Higher priority interrupts, when enabled, can interrupt a multiple
instruction sequence and yield unexpected results when a low-priority function has cre-
ated a multiple instruction Read-Modify-Write sequence accessing that same variable.
Therefore, embedded systems must implement an “atomic” operation to ensure that
the intervening high-priority ISR will not write to the variable from which the low-priority
ISR has just read, but not yet completed its write.

An atomic operation is one that cannot be broken down into its constituent parts – it
cannot be interrupted. Not all C expressions translate into an atomic operation. On
dsPIC DSC devices, these expressions mainly fall into the following categories: 32-bit
expressions, floating point arithmetic, division, operations on multi-bit bit-fields, and
fixed point operations. Other factors will determine whether or not an atomic operation
will be generated, such as memory model settings, optimization level and resource
availability. In other words, C does not guarantee atomicity of operations.

Consider the general expression:

 foo = bar op baz;

The operator (op) may or may not be atomic, based on the architecture of the device.
In any event, the compiler may not be able to generate the atomic operation in all
instances, depending on factors that may include the following:

• availability of an appropriate atomic machine instruction

• resource availability - special registers or other constraints

• optimization level, and other options that affect data/code placement

Without knowledge of the architecture, it is reasonable to assume that the general
expression requires two reads, one for each operand and one write to store the result.
Several difficulties may arise in the presence of interrupt sequences, depending on the
particular application.
DS50002071G-page 229 2012-2018 Microchip Technology Inc.

Interrupts
14.8.1.1 DEVELOPMENT ISSUES

Here are some examples of the issues that should be considered:

EXAMPLE 14-1: bar MUST MATCH baz

When it is required that bar and baz match (i.e., are updated synchronously with each
other), there is a possible hazard if either bar or baz can be updated within a higher
priority interrupt expression. Here are some sample flow sequences:

1. Safe:
read bar
read baz
perform operation
write back result to foo

2. Unsafe:
read bar
interrupt modifies baz
read baz
perform operation
write back result to foo

3. Safe:
read bar
read baz
interrupt modifies bar or baz
perform operation
write back result to foo

The first is safe because any interrupt falls outside the boundaries of the expression.
The second is unsafe because the application demands that bar and baz be updated
synchronously with each other. The third is probably safe; foo will possibly have an old
value, but the value will be consistent with the data that was available at the start of the
expression.

EXAMPLE 14-2: TYPE OF foo, bar AND baz

Another variation depends upon the type of foo, bar and baz. The operations “read
bar,” “read baz,” or “write back result to foo,” may not be atomic depending upon the
architecture of the target processor. For example, dsPIC DSC devices can read or write
an 8-bit, 16-bit, or 32-bit quantity in 1 (atomic) instruction. But a 32-bit quantity may
require two instructions depending upon instruction selection (which in turn will depend
upon optimization and memory model settings). Assume that the types are long and
the compiler is unable to choose atomic operations for accessing the data. Then the
access becomes:

read lsw bar
read msw bar
read lsw baz
read msw baz
perform operation (on lsw and on msw)
perform operation
write back lsw result to foo
write back msw result to foo

Now there are more possibilities for an update of bar or baz to cause unexpected data.
 2012-2018 Microchip Technology Inc. DS50002071G-page 230

MPLAB® XC16 C Compiler User’s Guide
EXAMPLE 14-3: BIT-FIELDS

A third cause for concern are bit-fields. C allows memory to be allocated at the bit level,
but does not define any bit operations. In the purest sense, any operation on a bit will
be treated as an operation on the underlying type of the bit-field and will usually require
some operations to extract the field from bar and baz or to insert the field into foo.
The important consideration to note is that (again depending upon instruction architec-
ture, optimization levels and memory settings) an interrupted routine that writes to any
portion of the bit-field where foo resides may be corruptible. This is particularly appar-
ent in the case where one of the operands is also the destination.

The dsPIC DSC instruction set can operate on 1 bit atomically. The compiler may select
these instructions depending upon optimization level, memory settings and resource
availability.

EXAMPLE 14-4: CACHED MEMORY VALUES IN REGISTERS

Finally, the compiler may choose to cache memory values in registers. These are often
referred to as register variables and are particularly prone to interrupt corruption, even
when an operation involving the variable is not being interrupted. Ensure that memory
resources shared between an ISR and an interruptible function are designated as
volatile. This will inform the compiler that the memory location may be updated
out-of-line from the serial code sequence. This will not protect against the effect of
non-atomic operations, but is never-the-less important.

14.8.1.2 DEVELOPMENT SOLUTIONS

Here are some strategies to remove potential hazards:

• Design the software system such that the conflicting event cannot occur. Do not
share memory between ISRs and other functions. Make ISRs as simple as
possible and move the real work to main code.

• Use care when sharing memory and, if possible, avoid sharing bit-fields which
contain multiple bits.

• Protect non-atomic updates of shared memory from interrupts as you would
protect critical sections of code. The following macro can be used for this purpose:

 #define INTERRUPT_PROTECT(x) { \
 char saved_ipl; \
 \
 SET_AND_SAVE_CPU_IPL(saved_ipl,7); \
 x; \
 RESTORE_CPU_IPL(saved_ipl); } (void) 0;

This macro disables interrupts by increasing the current priority level to 7,
performing the desired statement and then restoring the previous priority level.
DS50002071G-page 231 2012-2018 Microchip Technology Inc.

Interrupts
14.8.1.3 APPLICATION EXAMPLE

The following example highlights some of the points discussed in this section:

void __attribute__((interrupt))
 HigherPriorityInterrupt(void) {
 /* User Code Here */
 LATGbits.LATG15 = 1; /* Set LATG bit 15 */
 IPC0bits.INT0IP = 2; /* Set Interrupt 0
 priority (multiple
 bits involved) to 2 */
 }

int main(void) {
 /* More User Code */
 LATGbits.LATG10 ^= 1; /* Potential HAZARD -
 First reads LATG into a W reg,
 implements XOR operation,
 then writes result to LATG */

 LATG = 0x1238; /* No problem, this is a write
 only assignment operation */

 LATGbits.LATG5 = 1; /* No problem likely,
 this is an assignment of a
 single bit and will use a single
 instruction bit set operation */

 LATGbits.LATG2 = 0; /* No problem likely,
 single instruction bit clear
 operation probably used */

 LATG += 0x0001; /* Potential HAZARD -
 First reads LATG into a W reg,
 implements add operation,
 then writes result to LATG */

 IPC0bits.T1IP = 5; /* HAZARD -
 Assigning a multiple bitfield
 can generate a multiple
 instruction sequence */

}

A statement can be protected from interrupt using the INTERRUPT_PROTECT macro
provided above. For this example:

INTERRUPT_PROTECT(LATGbits.LATG15 ^= 1); /* Not interruptible by
 level 1-7 interrupt
 requests and safe
 at any optimization
 level */
 2012-2018 Microchip Technology Inc. DS50002071G-page 232

MPLAB® XC16 C Compiler User’s Guide
14.8.2 PSV Usage with Interrupt Service Routines

The introduction of managed psv pointers and CodeGuard Security psv constant sec-
tions in compiler v3.0 means that ISRs cannot make any assumptions about the setting
of PSVPAG. This is a migration issue for existing applications with ISRs that reference
the auto_psv constants section. In previous versions of the compiler, the ISR could
assume that the correct value of PSVPAG was set during program startup (unless the
programmer had explicitly changed it.)

To help mitigate this problem, two new function attributes will be introduced: auto_psv
and no_auto_psv. If an ISR references const variables or string literals using the
constants-in-code memory model, the auto_psv attribute should be added to the
function definition. This attribute will cause the compiler to preserve the previous con-
tents of PSVPAG and set it to section .const. Upon exit, the previous value of
PSVPAG will be restored. For example:

void __attribute__((interrupt, auto_psv)) _T1Interrupt()
{
 /* This function can reference const variables and
 string literals with the constants-in-code memory model. */
}

The no_auto_psv attribute is used to indicate that an ISR does not reference the
auto_psv constants section. If neither attribute is specified, the compiler assumes
auto_psv and inserts the necessary instructions to ensure correct operation at run
time. A warning diagnostic message is also issued that alerts the user to the migration
issue, and to the possibility of reducing interrupt latency by specifying the
no_auto_psv attribute.

14.8.3 Latency

There are two elements that affect the number of cycles between the time the interrupt
source occurs and the execution of the first instruction of your ISR code. These factors
are:

• Processor Servicing of Interrupt – the amount of time it takes the processor to
recognize the interrupt and branch to the first address of the interrupt vector. To
determine this value refer to the processor data sheet for the specific processor
and interrupt source being used.

• ISR Code – although an interrupt function may call other functions, whether they
be user-defined functions, library functions or implicitly called functions to imple-
ment a C operation, the compiler cannot know (in general) which resources are
used by the called function. As a result, the compiler will save all the working reg-
isters and RCOUNT, even if they are not all used explicitly in the ISR itself. The
increased latency associated with the call does not lend itself to fast response
times.
DS50002071G-page 233 2012-2018 Microchip Technology Inc.

Interrupts
NOTES:
 2012-2018 Microchip Technology Inc. DS50002071G-page 234

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 15. Main, Runtime Startup and Reset
15.1 INTRODUCTION

When creating C code, there are elements that are required to ensure proper program
operation: a main function must be present; startup code to initialize and clear vari-
ables, to set up registers and the processor; and Reset conditions that must be han-
dled. The following topics are discussed in this section:

• The main Function

• Runtime Startup and Initialization

15.2 THE main FUNCTION

The identifier main is special. It is must be used as the name of a function that will be
the first function to execute in a program. You must always have one and only one func-
tion called main() in your programs. Code associated with main(), is not the first
code to execute after Reset. Additional code provided by the compiler and known as
the runtime startup code is executed first and is responsible for transferring control to
the main() function.

The prototype that should be used for main() is as follows.

int main(void);

15.3 RUNTIME STARTUP AND INITIALIZATION

A C program requires certain objects to be initialized and the processor to be in a
particular state before it can begin execution of its function main(). It is the job of the
runtime startup code to perform these tasks, specifically (and in no particular order):

• Initialization of global variables assigned a value when defined

• Initialization of the stack

• Clearing of non-initialized global variables

• General setup of registers or processor state

Two C run-time startup modules are included in the libpic30-omf.a archive/library.
The entry point for both startup modules is __reset. The linker scripts construct a
GOTO __reset instruction at location 0 in program memory, which transfers control
upon device Reset.

The primary startup module is linked by default and performs the following:

1. The Stack Pointer (W15) and Stack Pointer Limit register (SPLIM) are initialized,
using values provided by the linker or a custom linker script. For more
information, see Section 6.4 “Stack.”

2. If a .const section is defined, it is mapped into the program space visibility
window by initializing the PSV page and CORCON registers, as appropriate, if
const-in-code memory mode is used or variables have been explicitly
allocated to space(auto_psv).
 2012-2018 Microchip Technology Inc. DS50002071G-page 235

Main, Runtime Startup and Reset
3. The data initialization template is read, causing all uninitialized objects to be
cleared and all initialized objects to be initialized with values read from program
memory. The data initialization template is created by the linker.

4. If the application has defined user_init functions (see
Section 13.2.2 “Function Attributes.”), these are invoked. The order of execution
depends on link order.

5. The function main() is called with no parameters.

6. If main() returns, the processor will reset.

The alternate startup module is linked when the -Wl, --no-data-init option is
specified. It performs the same operations, except for step (3), which is omitted. The
alternate startup module is smaller than the primary module, and can be selected to
conserve program memory if data initialization is not required.

Zipped source code (in dsPIC DSC assembly language) for both modules is provided
in the <xc16 install directory>\src\libpic30.zip. The startup modules
may be modified if necessary. For example, if an application requires main to be called
with parameters, a conditional assembly directive may be changed to provide this
support.

You can override the normal startup behavior by defining the function
int _crt_start_mode(void). This function should return 0 to indicate that a nor-
mal start up procedure is used. Any other return value will indicate that preserved
variables should not be initialized. If you have not defined this function, the compiler will
always initialize everything.

Note: Persistent data is never cleared or initialized.
 2012-2018 Microchip Technology Inc. DS50002071G-page 236

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 16. Mixing C and Assembly Code
16.1 INTRODUCTION

This section describes how to use assembly language and C modules together. It gives
examples of using C variables and functions in assembly code and examples of using
assembly language variables and functions in C.

Items discussed are:

• Mixing Assembly Language and C Variables and Functions – separate assembly
language modules may be assembled then linked with compiled C modules.

• Using Inline Assembly Language – assembly language instructions may be
embedded directly into the C code. The inline assembler supports both simple
(non-parameterized) assembly language statement, as well as extended
(parameterized) statements (where C variables can be accessed as operands of
an assembler instruction).

• Predefined Assembly Macros – a list of predefined assembly-code macros to be
used in C code is provided.

16.2 MIXING ASSEMBLY LANGUAGE AND C VARIABLES AND FUNCTIONS

The following guidelines indicate how to interface separate assembly language
modules with C modules.

• Follow the register conventions described in 12.2 “Register Variables.” In particu-
lar, registers W0-W7 are used for parameter passing. An assembly language
function will receive parameters and pass arguments to called functions in these
registers.

• Functions not called during interrupt handling must preserve registers W8-W15.
That is, the values in these registers must be saved before they are modified and
restored before returning to the calling function. Registers W0-W7 may be used
without restoring their values.

• Interrupt functions must preserve all registers. Unlike a normal function call, an
interrupt may occur at any point during the execution of a program. When return-
ing to the normal program, all registers must be as they were before the interrupt
occurred.

• Variables or functions declared within a separate assembly file that will be
referenced by any C source file should be declared as global using the assembler
directive.global. External symbols should be preceded by at least one
underscore. The C function main is named _main in assembly and conversely an
assembly symbol _do_something will be referenced in C as do_something.
Undeclared symbols used in assembly files will be treated as externally defined.

The following example shows how to use variables and functions in both assembly
language and C regardless of where they were originally defined.

The file ex1.c defines foo and cVariable to be used in the assembly language file.
The C file also shows how to call an assembly function, asmFunction, and how to
access the assembly defined variable, asmVariable.
 2012-2018 Microchip Technology Inc. DS50002071G-page 237

Mixing C and Assembly Code
Examples in this Section:

• Mixing C and Assembly

• Calling an Assembly Function in C

EXAMPLE 16-1: MIXING C AND ASSEMBLY

/*
** file: ex1.c
*/
extern unsigned int asmVariable;
extern void asmFunction(void);
unsigned int cVariable;
void foo(void)
{
 asmFunction();
 asmVariable = 0x1234;
}

The file ex2.s defines asmFunction and asmVariable as required for use in a
linked application. The assembly file also shows how to call a C function, foo, and how
to access a C defined variable, cVariable.

;
; file: ex2.s
;
 .text
 .global _asmFunction
_asmFunction:
 mov #0,w0
 mov w0,_cVariable
 return

 .global _main
_main:
 call _foo
 return

 .bss
 .global _asmVariable
 .align 2
_asmVariable: .space 2
 .end

In the C file, ex1.c, external references to symbols declared in an assembly file are
declared using the standard extern keyword; note that asmFunction, or
_asmFunction in the assembly source, is a void function and is declared
accordingly.

In the assembly file, ex1.s, the symbols _asmFunction, _main and _asmVariable
are made globally visible through the use of the .global assembler directive and can
be accessed by any other source file. The symbol _main is only referenced and not
declared; therefore, the assembler takes this to be an external reference.

The following compiler example shows how to call an assembly function with two
parameters. The C function main in call1.c calls the asmFunction in call2.s
with two parameters.
 2012-2018 Microchip Technology Inc. DS50002071G-page 238

MPLAB® XC16 C Compiler User’s Guide
EXAMPLE 16-2: CALLING AN ASSEMBLY FUNCTION IN C

/*
** file: call1.c
*/
extern int asmFunction(int, int);
int x;
void
main(void)
{
 x = asmFunction(0x100, 0x200);
}

The assembly-language function sums its two parameters and returns the result.

;
; file: call2.s
;
 .global _asmFunction
_asmFunction:
 add w0,w1,w0
 return
 .end

Parameter passing in C is detailed in Section 13.8.2 “Return Value.” In the preceding
example, the two integer arguments are passed in the W0 and W1 registers. The
integer return result is transferred via register W0. More complicated parameter lists
may require different registers and care should be taken in the hand-written assembly
to follow the guidelines.
DS50002071G-page 239 2012-2018 Microchip Technology Inc.

Mixing C and Assembly Code
16.3 USING INLINE ASSEMBLY LANGUAGE

Within a C function, the asm statement may be used to insert a line of assembly
language code into the assembly language that the compiler generates. Inline
assembly has two forms: simple and extended.

In the simple form, the assembler instruction is written using the syntax:

asm ("instruction");

where instruction is a valid assembly-language construct. If you are writing inline
assembly in ANSI C programs, write __asm__ instead of asm.

In an extended assembler instruction using asm, the operands of the instruction are
specified using C expressions. The extended syntax is:

asm("template" [: ["constraint"(output-operand) [, ...]]
 [: ["constraint"(input-operand) [, ...]]
 ["clobber" [, ...]]
]
]);

You must specify an assembler instruction template, plus an operand constraint
string for each operand. The template specifies the instruction mnemonic and option-
ally placeholders for the operands. The constraint strings specify operand con-
straints, for example, that an operand must either be in a register (the usual case) or
that it must be an immediate value.

Constraint letters and modifiers supported by the compiler are listed in Table 16-1 and
Table 16-2 respectively.

Note: Only a single string can be passed to the simple form of inline
assembly.

TABLE 16-1: CONSTRAINT LETTERS SUPPORTED BY THE COMPILER

Letter Constraint

a Claims WREG

b Divide support register W1

c Multiply support register W2

d General purpose data registers W1-W14

e Non-divide support registers W2-W14

g Any register, memory or immediate integer operand is allowed, except for registers that are not
general registers.

i An immediate integer operand (one with constant value) is allowed. This includes symbolic con-
stants whose values will be known only at assembly time.

r A register operand is allowed provided that it is in a general register.

v AWB register W13

w Accumulator register A-B

x x prefetch registers W8-W9

y y prefetch registers W10-W11

z MAC prefetch registers W4-W7

0, 1, … , 9 An operand that matches the specified operand number is allowed. If a digit is used together with
letters within the same alternative, the digit should come last.
By default, %n represents the first register for the operand (n). To access the second, third, or
fourth register, use a modifier letter.

C An even-odd register pair
 2012-2018 Microchip Technology Inc. DS50002071G-page 240

MPLAB® XC16 C Compiler User’s Guide

D An even-numbered register

T A near or far data operand.

U A near data operand.

TABLE 16-1: CONSTRAINT LETTERS SUPPORTED BY THE COMPILER (CONTINUED)

Letter Constraint

TABLE 16-2: CONSTRAINT MODIFIERS SUPPORTED BY THE COMPILER

Modifier Constraint

= Means that this operand is write-only for this instruction: the previous value is discarded and replaced
by output data.

+ Means that this operand is both read and written by the instruction.

& Means that this operand is an earlyclobber operand, which is modified before the instruction is fin-
ished using the input operands. Therefore, this operand may not lie in a register that is used as an input
operand or as part of any memory address.

d Second register for operand number n, i.e., %dn.

q Fourth register for operand number n, i.e., %qn.

t Third register for operand number n, i.e., %tn.
DS50002071G-page 241 2012-2018 Microchip Technology Inc.

Mixing C and Assembly Code
Examples in this Section:

• Passing C Variables

• Clobbering Registers

• Using Multiple Assembler Instructions

• Using ‘&’ to Prevent Input Register Clobbering

• Matching Operands

• Naming Operands

• Volatile asm Statements

• Handling Values Larger Than int

EXAMPLE 16-3: PASSING C VARIABLES

This example demonstrates how to use the swap instruction (which the compiler does
not generally use):

asm ("swap %0" : "+r"(var));

Here var is the C expression for the operand, which is both an input and an output
operand. The operand is constrained to be of type r, which denotes a register operand.
The + in +r indicates that the operand is both an input and output operand.

Each operand is described by an operand-constraint string that is followed by the C
expression in parentheses. A colon separates the assembler template from the first
output operand and another separates the last output operand from the first input, if
any. Commas separate output operands and separate inputs.

If there are no output operands, but there are input operands; then there must be two
consecutive colons surrounding the place where the output operands would go. The
compiler requires that the output operand expressions must be L-values. The input
operands need not be L-values. The compiler cannot check whether the operands
have data types that are reasonable for the instruction being executed. It does not
parse the assembler instruction template and does not know what it means, or whether
it is valid assembler input. The extended asm feature is most often used for machine
instructions that the compiler itself does not know exist. If the output expression cannot
be directly addressed (for example, it is a bit-field), the constraint must allow a register.
In that case, the compiler will use the register as the output of the asm, and then store
that register into the output. If output operands are write-only, the compiler will assume
that the values in these operands before the instruction are dead and need not be
generated.

EXAMPLE 16-4: CLOBBERING REGISTERS

Some instructions clobber specific hard registers. To describe this, write a third colon
after the input operands, followed by the names of the clobbered hard registers (given
as strings separated by commas). Here is an example:

asm volatile ("mul.b %0"
: /* no outputs */
: "U" (nvar)
: "w2");

In this case, the operand nvar is a character variable declared in near data space, as
specified by the “U” constraint. If the assembler instruction can alter the flags (condition
code) register, add “cc” to the list of clobbered registers. If the assembler instruction
modifies memory in an unpredictable fashion, add “memory” to the list of clobbered
registers. This will cause the compiler to not keep memory values cached in registers
across the assembler instruction.
 2012-2018 Microchip Technology Inc. DS50002071G-page 242

MPLAB® XC16 C Compiler User’s Guide
EXAMPLE 16-5: USING MULTIPLE ASSEMBLER INSTRUCTIONS

You can put multiple assembler instructions together in a single asm template,
separated with newlines (written as \n). The input operands and the output operands’
addresses are ensured not to use any of the clobbered registers, so you can read and
write the clobbered registers as many times as you like. Here is an example of multiple
instructions in a template; it assumes that the subroutine _foo accepts arguments in
registers W0 and W1:

asm ("mov %0,w0\nmov %1,W1\ncall _foo"
: /* no outputs */
: "g" (a), "g" (b)
: "W0", "W1");

In this example, the constraint strings “g” indicate a general operand.

EXAMPLE 16-6: USING ‘&’ TO PREVENT INPUT REGISTER CLOBBERING

Unless an output operand has the & constraint modifier, the compiler may allocate it in
the same register as an unrelated input operand, on the assumption that the inputs are
consumed before the outputs are produced. This assumption may be false if the
assembler code actually consists of more than one instruction. In such a case, use &
for each output operand that may not overlap an input operand. For example, consider
the following function:

int
exprbad(int a, int b)
{
 int c;

 __asm__("add %1,%2,%0\n sl %0,%1,%0"
 : "=r"(c) : "r"(a), "r"(b));

 return(c);
}

The intention is to compute the value (a + b) << a. However, as written, the value
computed may or may not be this value. The correct coding informs the compiler that
the operand c is modified before the asm instruction is finished using the input
operands, as follows:

int
exprgood(int a, int b)
{
 int c;

 __asm__("add %1,%2,%0\n sl %0,%1,%0"
 : "=&r"(c) : "r"(a), "r"(b));

 return(c);
}

DS50002071G-page 243 2012-2018 Microchip Technology Inc.

Mixing C and Assembly Code
EXAMPLE 16-7: MATCHING OPERANDS

When the assembler instruction has a read-write operand, or an operand in which only
some of the bits are to be changed, you must logically split its function into two separate
operands: one input operand and one write-only output operand. The connection
between them is expressed by constraints that say they need to be in the same location
when the instruction executes. You can use the same C expression for both operands
or different expressions. For example, here is the add instruction with bar as its
read-only source operand and foo as its read-write destination:

asm ("add %2,%1,%0"
: "=r" (foo)
: "0" (foo), "r" (bar));

The constraint “0” for operand 1 says that it must occupy the same location as operand
0. A digit in constraint is allowed only in an input operand and must refer to an output
operand. Only a digit in the constraint can ensure that one operand will be in the same
place as another. The mere fact that foo is the value of both operands is not enough
to ensure that they will be in the same place in the generated assembler code. The
following would not work:

asm ("add %2,%1,%0"
: "=r" (foo)
: "r" (foo), "r" (bar));

Various optimizations or reloading could cause operands 0 and 1 to be in different
registers. For example, the compiler might find a copy of the value of foo in one
register and use it for operand 1, but generate the output operand 0 in a different
register (copying it afterward to foo’s own address).

EXAMPLE 16-8: NAMING OPERANDS

It is also possible to specify input and output operands using symbolic names that can
be referenced within the assembler code template. These names are specified inside
square brackets preceding the constraint string, and can be referenced inside the
assembler code template using %[name] instead of a percentage sign followed by the
operand number. Using named operands, the above example could be coded as
follows:

asm ("add %[foo],%[bar],%[foo]"
: [foo] "=r" (foo)
: "0" (foo), [bar] "r" (bar));

EXAMPLE 16-9: VOLATILE ASM STATEMENTS

You can prevent an asm instruction from being deleted, moved significantly, or
combined, by writing the keyword volatile after the asm. For example:

#define disi(n) \
asm volatile ("disi #%0" \
: /* no outputs */ \
: "i" (n))

In this case, the constraint letter “i” denotes an immediate operand, as required by the
disi instruction.
 2012-2018 Microchip Technology Inc. DS50002071G-page 244

MPLAB® XC16 C Compiler User’s Guide
EXAMPLE 16-10: HANDLING VALUES LARGER THAN INT

Constraint letters and modifiers may be used to identify various entities with which it is
acceptable to replace a particular operand, such as %0 in:

asm("mov %1, %0" : "r"(foo) : "r"(bar));

This example indicates that the value stored in foo should be moved into bar. The
example code performs this task unless foo or bar are larger than an int.

By default, %0 represents the first register for the operand (0). To access the second,
third, or fourth register, use a modifier letter specified in Table 16-2.
DS50002071G-page 245 2012-2018 Microchip Technology Inc.

Mixing C and Assembly Code
16.4 PREDEFINED ASSEMBLY MACROS

Some macros used to insert assembly code in C are defined once you include <xc.h>.
The macros are: Nop(), ClrWdt(), Sleep() and Idle(). The latter two insert the
PWRSAV instruction with an argument of #0 and #1, respectively.
 2012-2018 Microchip Technology Inc. DS50002071G-page 246

MPLAB® XC16 C Compiler User’s Guide
DS50002071G-page 247 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 17. Library Routines
17.1 INTRODUCTION

Many library functions or routines (and any associated variables) will be automatically
linked into a program once they have been referenced in your source code. The use of
a function from one library file will not include any other functions from that library. Only
used library functions will be linked into the program output and consume memory.

Library and precompiled object files are stored in the compiler’s installation directory
structure.

Your program will require declarations for any functions or symbols used from libraries.
These are contained in the standard C header (.h) files. Header files are not library
files and the two files types should not be confused. Library files contain precompiled
code, typically functions and variable definitions; the header files provide declarations
(as opposed to definitions) for functions, variables and types in the library files, as well
as other preprocessor macros.

The include directories, under the compiler’s installation directory, are where the
compiler stores the standard C library system header files. The installation will
automatically locate its bundled include files.

Some libraries require manual inclusion in your project, or require special options to
use. See the 16-Bit Language Tools Libraries (DS51456) for questions about particular
libraries.

Libraries which are found automatically include:

• Standard C library

• dsPIC30 support libraries

• Standard IEEE floating point library

• Fixed point library

• Device peripheral library

EXAMPLE 17-1: USING THE MATH LIBRARY

#include <math.h> // declare function prototype for sqrt

void main(void)
{
 double i;

 // sqrt referenced; sqrt will be linked in from library file
 i = sqrt(23.5);
}

 2012-2018 Microchip Technology Inc. DS50002071G-page 247

MPLAB® XC16 C Compiler User’s Guide
NOTES:
DS50002071G-page 248 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 18. Optimizations
18.1 INTRODUCTION

MPLAB XC16 C Compiler license types are Free, EVAL and PRO. The initial compiler
download begins as a Free license with minimal optimizations. Enabling an Evaluation
(EVAL) license allows 60 days to evaluate the compiler as a Professional (PRO) license
with the most optimizations. The PRO license can be purchased any time.

Different optimizations may be set ranging from no optimization to full optimization,
depending on your compiler license. When debugging code, you may prefer not to
optimize your code to ensure expected program flow.

• Optimization Feature Summary

• How to Enable Optimization

• Using Optimizations

FIGURE 18-1: OPTIMIZATION LEVELS PER LICENSE

License Cost Optimization Options*

Professional (PRO) Yes -O0, -O1, -O2, -O3, -Os, -mpa

Free No -O0, -O1

Evaluation (EVAL) No PRO optimizations enabled for 60 days; afterward reverts to
Free optimizations.

* See Section 5.7.6 “Options for Controlling Optimization.”.

100%

50%

0%

*Free Edition includes a 60-day PRO evaluation that can be started any time.

O
P

T
IM

IZ
A

T
IO

N
 L

E
V

E
L

S

Free* PRO
 2012-2018 Microchip Technology Inc. DS50002071G-page 249

MPLAB® XC16 C Compiler User’s Guide
18.2 OPTIMIZATION FEATURE SUMMARY

Each license supports optimizations equal to specific features. Lists of currently-supported optimization fea-
tures are show below. These features are subject to change.

TABLE 18-1: LICENSE OPTIMIZATION FEATURES

Free PRO

• defer pop

• delayed branch

• omit frame pointer

• guess branch prob

• cprop registers

• forward propagate

• if conversion

• if conversion2

• ipa pure const

• ipa reference

• merge constants

• split wide types

• tree ccp

• tree dce

• tree dom

• tree dse

• tree ter

• tree sra

• tree copyrename

• tree fre

• tree copy prop

• tree sink

• tree ch

All Free optimizations, plus:

• indirect inlining

• thread jumps

• crossjumping

• optimize sibling calls

• cse follow jumps

• gcse

• expensive optimizations

• cse after loop

• caller saves

• peephole2

• schedule insns

• schedule insns after reload

• regmove

• strict aliasing

• strict overflow

• reorder blocks

• reorder functions

• tree vrp

• tree builtin call dce

• tree pre

• tree switch conversion

• ipa cp

• ipa sra

• predictive commoning

• inline functions

• unswitch loops

• gcse after reload

• tree vectorize

• ipa cp clone

• Whole-program optimizations
DS50002071G-page 250 2012-2018 Microchip Technology Inc.

Optimizations
18.3 HOW TO ENABLE OPTIMIZATION

MPLAB XC16 is derived from the GCC source-base which provides many different
individual switches for controlling optimizations.

It is recommended that you use the 'big O' optimization switches. The more common
variants of GCC (Arm, MIPS, ix86, etc.) may update optimization switches more quickly
than the dsPIC port, so consequently there may be individual switches that appear and
disappear. Sticking with the big O optimizations is a good way to remove surprises.

The big O optimizations are organized into four categories, declared using the -On
option, where n is a numerical value in the range of 0 to 3. Additionally, there is the -Os
option, which falls somewhere between -O2 and -O3. Free (unlicensed) compilers pro-
vide -O0 and -O1 options, and PRO licenses add -O2, -O3 and -Os options.

In general, the larger the value of n, the more optimizations are performed. Some tech-
niques are designed to reduce code size, some are designed to increase the perfor-
mance of the generated code, and some do both. You will need to determine what is
most important for you (speed vs. size trade-offs) and choose the option appropriate
for your application.

MPLAB XC16 also supports procedural abstraction, sometimes called
function-outlining, via the -mpa option. This optimization intends to reduce the code
size by abstracting common generated code into individual functions (i.e., the opposite
of function inlining). This can reduce code size and is performed on assembly code,
post compilation.

Additionally MPLAB XC16 supports -moptimize-page-setting which attempts to
minimize the effect of DSRPAG swapping with the named address space qualifiers.
 2012-2018 Microchip Technology Inc. DS50002071G-page 251

MPLAB® XC16 C Compiler User’s Guide
18.4 USING OPTIMIZATIONS

The MPLAB XC16 C compiler supports general, as well as several specific, optimiza-
tion options (see Section 5.7.6 “Options for Controlling Optimization.”). In most cases,
only general optimization options (-On) should be used. For details, see
Section 18.3 “How to Enable Optimization.”

The more a compiler optimizes the output code, the further away from the C program
the code might become. This is the nature of optimization and is often exasperated by
a weakness of debug information to represent these changes. Optimizations tend to:

• convert structures into scalar variables (to remove unused members)

• re-order flow, or duplicate it, for speed improvements

• capture results, or partial results, for re-use later

• remove unreachable code

• remove unused variables or promote an object to a register variable

• remove code that has no externally visible effect

Many of these transformations can make debugging code much more difficult. Some
of them can turn a "working" program into something that no-longer executes correctly;
typically, this means that the working program is not a well-formed C program and the
optimizer has exposed this.

18.4.1 Coding for an Optimizing Compiler

How do you get the best out of the optimizer? It turns out the answer to this question is
remarkably straight-forward.

Code clearly. The C language can be quite complex. Perhaps you may remember the
obfuscated C one-liner competitions that many magazines from the early days of C
used to have. These are the opposite of “code clearly.” The chances are that if you can't
read the code, then it is not correct (well-formed) and the optimizer will expose this.
Also, some clever C coding tricks will have side-effects that prevent the compiler from
doing its best to get concise executable code. Remember, you want the output of the
compiler to be concise and take advantage of the architecture...not the input!

Use well typed objects. It is recommended that you make use of the types defined in
stdint.h instead of native C types. For example, the fastest way to represent a 8-bit
value on a 16-bit device, such as Microchip's dsPIC line of products, is to use
int_fast8_t from stdint.h. While you can cast (or let the compiler cast) an object
to a different type, this may indicate that you should have chosen a better type in the
first place. Additionally, the size and signed-ness of the picked type can have an impact
on code generation; unfortunately, this is architecture dependent.

Take care using inline assembly (or don't use it at all). GCC-based compilers, such
as MPLAB XC16, have an extended inline assembly format that is provided to commu-
nicate how data flows through inline assembly. This allows the compiler to properly opti-
mize the flow of values around assembly statements. This is often a source of “compiler
bugs” and the first place to look when investigating whether or not the compiler is bro-
ken. Make sure you tell the compiler when writing to a register in inline assembly; the
compiler might be using it already! Make sure you tell the compiler if the result of a C
expression is used within the inline assembly; if the compiler does not see the use of
an expression, it might discard it. Extended GNU inline assembly is described more
fully in Section 16.3 “Using Inline Assembly Language.”. Also a rich set of builtin func-
tions are provided that perform many of the tasks for which inline assembly is often
used.
DS50002071G-page 252 2012-2018 Microchip Technology Inc.

Optimizations
Don't be afraid to use the optimizer. Once you are confident that the code does what
you want to do (test early, test often), don't be afraid to enable optimizations. Optimiza-
tions can make it harder to debug, so it is important to take this step once you have
tested and have working code.

18.4.2 Help! Optimizing Broke my Code!

If turning the optimizer on has changed the execution behavior of the code, then the
following section may help you to determine your issue and resolve it.

18.4.2.1 SHARING DATA BETWEEN DIFFERENT THREADS OF EXECUTION

Sharing data between different threads of execution (such as between mainline code
and an interrupt service routine or between two different threads in a Realtime Operat-
ing System like environment) can sometimes be complex.

Make sure that any objects that may be shared in this way are marked as volatile
(both read or write sharing). volatile instructs the compiler to honor all accesses to
memory, which will prevent the compiler from caching a value in a register. If the vari-
able is shared, then this is a good thing! The compiler needs to know that the variable
might change because of a hardware or other external event, such as in this example
where we wish to wait for the buffer to have some data in it before progressing:

IOPORT.buffer_emtpy = 1;

while (IOPORT.buffer_empty);

If the object is not marked as volatile when optimizing the compiler, then it might
determine that the value will never change and do something horrible to the loop or
worse. Consider the rest of the code to be unreachable and replace the expression with
while(1);

There are times however, when volatile is not enough. The compiler may not be
able to compute an expression without going through an intermediate register. This
means there may be a window of time when a value is stored in a register while the
new value is being computed. If it is marked as volatile, then it will be written back.
This could be the source of data corruption, especially if the object is a single memory
location that has many separate data values like a C bitfield. In the following structure
example, status is a flag set by some external process and blinky is a heartbeat in
the mainline code.

volatile struct corruptable {

 uint16_t status:3;

 uint16_t blinky:1;

} object;

...

while (object.status != 0) {

 object.blinky ^= 1;

}

If the compiler has not been able to generate an atomic, uninterruptable sequence to
XOR blinky then this can be a possible source of corruption. Consider the flow where
status is updated but the blinky update is not complete. Writing back the new value
of blinky, which shares a word with status, might over-write the possibly new value
of status causing the generated code to never see when status has been updated.
 2012-2018 Microchip Technology Inc. DS50002071G-page 253

MPLAB® XC16 C Compiler User’s Guide
If your code is similar to the above example, you can see that volatile is not a suf-
ficient solution. Consider coding styles that will prevent this overwrite from occurring,
such as not sharing memory in that way and the use of critical-sections to control
access of shared data. Often it is efficient and clearer to make use of the
object-oriented principal of accessor functions where the access of each object is
tightly controlled in one place. A well-defined gating of shared data can allow the code
to be written without using volatile at all, thus allowing the code to be safe and share
data efficiently.

18.4.2.2 INTERMIXING C AND ASSEMBLY

If your code has any inline assembly, ensure that the code is written in such a way that
the compiler knows about register access and data flow.

For example, the following code will likely cause a failure when optimized.

int foo;

int bar() {
 asm("mov _foo,w7");
 asm("inc w7,w0");
 asm("return");
}

Though the example could be written in pure C as return foo+1;, the correct way
to write this in inline assembly requires the use of extended Asm syntax:

int bar() {
 int result;

 asm("inc %1,%0" : "=r"(result) : "r"(foo));
 return result;
}

This allows the compiler to connect C variables to registers. The compiler will pick an
appropriate register and arrange to save the values as needed.

Ensure any assembly function that your write satisfies the rules specified in Chapter
16. “Mixing C and Assembly Code”.
DS50002071G-page 254 2012-2018 Microchip Technology Inc.

Optimizations
18.4.3 Debugging Strategies for Optimized Code

The optimizer can introduce challenges for debugging code which increase with higher
levels of optimization. For the best debugging experience, make sure that the
ELF/DWARF object file format is selected (as opposed to COFF) whenever possible.
The output file format is selected in MPLAB X IDE under Project Properties>XC16
(Global Options) (Figure 18-2).

The DWARF symbol language has advanced features that allow the compiler to pro-
vide more information when optimized. The compiler will be able to describe how object
values flow in and out of registers, even if the register changes. For this reason,
ELF/DWARF at -O1 will provide a reasonably smooth debugging experience with
some optimizations.

FIGURE 18-2: PROJECT PROPERTIES XC16 GLOBAL OPTIONS

Earlier (Section 18.4 “Using Optimizations.”) we mentioned some of the effects of opti-
mizing code. Some of these effects will prevent the debugger from displaying a value
(the variable is not needed and has been optimized away) or placing a breakpoint (the
line of code does not exist).

Sometimes it is more effective to debug in a mixed C-assembly display, or to follow the
C code along with the Program Memory view.
 2012-2018 Microchip Technology Inc. DS50002071G-page 255

MPLAB® XC16 C Compiler User’s Guide
Additionally, MPLAB XC C compilers provide a couple of tools that can be helpful.

• A variant of the standard C assertion mechanism can be used to return to the
debugger at certain execution points. The macro __conditional_soft-
ware_breakpoint(X) is available in assert.h and can be used to halt the
debugger.

• The optimization level can be set on a function-by-function basis. For example, to
make debugging of a particular function easier while still optimizing the rest of the
application, define the function like this:
Tau __attribute__((optimize(1))) fn(...){}
A declaration of this form will override the current global optimization setting on a
function-by-function basis.

• The MPLAB X IDE defines the pre-processor symbol __DEBUG when a debug
build is being produced. This can be useful for enabling code changes to support
debugging only when actually debugging. For example, conditionally changing the
optimization level for a given function can be implemented with a simple macro:
#ifdef __DEBUG
#define DBG_OPTIMIZE(X) __attribute__((optimize(X)))
#else
#define DBG_OPTIMIZE(X) /* not debugging */
#endif

Tau DBG_OPTIMIZE(1) fn(...) {
}

Multiple attributes can be combined. This is valid:
void __attribute__((interrupt)) DBG_OPTIMIZE(1) _T1Interrupt(void)
{
}

DS50002071G-page 256 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 19. Preprocessing
19.1 INTRODUCTION

All C source files are preprocessed before compilation. The -E option can be used to
preprocess and then stop the compilation. See Section 5.7.2 “Options for Controlling
the Kind of Output.”

Assembler files can also be preprocessed if the file extension is .S rather than .s. see
Section 5.2.3 “Input File Types.”

Items discussed in this section are:

• C Language Comments

• Preprocessing Directives

• Predefined Macro Names

• Pragmas vs. Attributes

19.2 C LANGUAGE COMMENTS

The MPLAB XC16 C Compiler supports standard C comments, as well as C++ style
comments. Both types are illustrated in the following table.

Comment Syntax Description Example

/* */ Standard C code comment.
Used for one or more lines.

/* This is line 1
 This is line 2 */

// C++ code comment. Used for
one line only.

// This is line 1
// This is line 2
 2012-2018 Microchip Technology Inc. DS50002071G-page 257

MPLAB® XC16 C Compiler User’s Guide
19.3 PREPROCESSING DIRECTIVES

The compiler accepts several specialized preprocessor directives in addition to the
standard directives. All of these are listed in Table 19-1.

Macro expansion using arguments can use the # character to convert an argument to
a string, and the ## sequence to concatenate arguments. If two expressions are being
concatenated, consider using two macros in case either expression requires
substitution itself, so for example

#define paste1(a,b) a##b
#define paste(a,b) paste1(a,b)

lets you use the paste macro to concatenate two expressions that themselves may
require further expansion. Remember that once a macro identifier has been expanded,
it will not be expanded again if it appears after concatenation.

For implementation-defined behavior of preprocessing directives, see
Section A.14 “Preprocessing Directives.”

TABLE 19-1: PREPROCESSOR DIRECTIVES

Directive Meaning Example

#define Define preprocessor macro #define SIZE 5
#define FLAG
#define add(a,b) ((a)+(b))

#elif Short for #else #if see #ifdef

#else Conditionally include source lines see #if

#endif Terminate conditional source inclusion see #if

#error Generate an error message #error Size too big

#if Include source lines if constant
expression true

#if SIZE < 10
 c = process(10)
#else
 skip();
#endif

#ifdef Include source lines if preprocessor
symbol defined

#ifdef FLAG
 do_loop();
#elif SIZE == 5
 skip_loop();
#endif

#ifndef Include source lines if preprocessor
symbol not defined

#ifndef FLAG
 jump();
#endif

#include Include text file into source #include <stdio.h>
#include "project.h"

#line Specify line number and file name for
listing

#line 3 final

#pragma Compiler specific options Refer to Section 19.5 “Pragmas vs.
Attributes.”

#undef Undefines preprocessor symbol #undef FLAG

#warning Generate a warning message #warning Length not set
DS50002071G-page 258 2012-2018 Microchip Technology Inc.

Preprocessing
19.4 PREDEFINED MACRO NAMES

The compiler predefines several macros which can be tested by conditional directives
in source code. Constants that have been deprecated may be found in Appendix
F. “Deprecated Features.”

19.4.1 Compiler Version Macro

The compiler will define the constant __XC16_VERSION__ , giving a numeric value to
the version identifier. This can be used to take advantage of new compiler features
while remaining backwardly compatible with older versions.

The value is based upon the major and minor version numbers of the current release.
For example, release version 1.00 will have a __XC16_VERSION__ definition of 1000.
This macro can be used, in conjunction with standard preprocessor comparison
statements, to conditionally include/exclude various code constructs.

The current definition of __XC16_VERSION__ can be discovered by adding
--version to the command line, or by inspecting the README.html file that came
with the release.

19.4.2 Output Types and Device Macros

The following symbols are defined with the -ansi command line option.

The following symbols are defined when -ansi is not selected.

In addition, the compiler defines a symbol based on the target device set with -mcpu=.
For example, -mcpu=30F6014, which defines the symbol __dsPIC30F6014__.

TABLE 19-2: MACROS DEFINED WITH -ANSI

Symbol - Leading
Double Underline

Symbol - Leading &
Lagging Double

Underline
Description

__XC16 __XC16__ If defined, 16-bit compiler is in use

__C30 __C30__

__dsPICC30 __dsPIC30__

__XC16ELF __XC16ELF__ If defined, compiler is producing ELF
output__C30ELF __C30ELF__

__dsPIC30ELF __C30ELF__

__XC16COFF __XC16COFF__ If defined, compiler is producing COFF
output__C30COFF __C30COFF__

__dsPIC30COFF __dsPIC30COFF__

TABLE 19-3: MACROS DEFINED WITHOUT -ANSI

Symbol Description

XC16 16-bit compiler is in use

C30

dsPIC30
 2012-2018 Microchip Technology Inc. DS50002071G-page 259

MPLAB® XC16 C Compiler User’s Guide
19.4.3 Device Features Macros

The following symbols are defined if device features are enabled.

19.4.4 Other Macros

The following symbols define other features.

TABLE 19-4: DEVICE FEATURES MACROS/SYMBOLS

Symbol Description

__HAS_DSP__ Device has a DSP engine

__HAS_EEDATA__ Device has EEPROM data (EEData) memory

__HAS_DMA__ Device has a DMA controller
This is a generic macro which is set if any DMA controller is present. This DOES NOT
indicate that DMA memory is present. To determine if there is any DMA memory, use
the __DMA_BASE or __DMA_LENGTH manifest constants which should be defined the
device header file.

__HAS_DMAV2__ Device has a DMA V2 controller
This macro is set if a DMA V2 controller is present. This DOES NOT indicate that
DMA memory is present. To determine if there is any DMA memory, use the
__DMA_BASE or __DMA_LENGTH manifest constants which should be defined the
device header file.

__HAS_CODEGUARD__ Device has CodeGuard™ Security

__HAS_PMP__ Device has Parallel Master Port

__HAS_PMPV2__ Device has Parallel Master Port V2

__HAS_PMP_ENHANCED__ Device has Enhanced Parallel Master Port

__HAS_EDS__ Device has Extended Data Space

__HAS_5VOLTS__ Device is a 5-volt device

TABLE 19-5: OTHER MACROS/SYMBOLS

Symbol Description

__FILE__ Current file name as a C string

__LINE__ Current line number as a decimal integer

__DATE__ Current date as a C string
DS50002071G-page 260 2012-2018 Microchip Technology Inc.

Preprocessing
19.5 PRAGMAS VS. ATTRIBUTES

The MPLAB XC16 C Compiler uses non-ANSI attributes instead of pragmas or qualifi-
ers to locate variables and functions in memory. As a comparison, the PIC18 MCU C
Compiler - also called MPLAB C18 - uses pragmas for sections (code, romdata,
udata, idata), interrupts (high-priority and low-priority) and variable locations (bank,
section). The former HI-TECH C Compiler for PIC18 MCUs and the newer MPLAB XC8
compiler use qualifiers or pragmas to perform the same actions.

If you are used to using a PIC18 compiler, this section will show how to use XC16 attri-
butes instead. For more on attributes, see Section 8.11 “Variable Attributes.” and
Section 13.2.1 “Function Specifiers.”.

TABLE 19-6: C18 PRAGMAS VS. ATTRIBUTES

TABLE 19-7: PICC18 PRAGMAS AND QUALIFIERS VS. ATTRIBUTES

EXAMPLE 19-1: SPECIFY AN UNINITIALIZED VARIABLE IN A USER SECTION
IN DATA MEMORY

where oldbss is the name of the psect (section) in which the variable would normally
be placed.

Pragma (MPLAB C18) Attribute (MPLAB XC16)

#pragma udata [name] __attribute__ ((section ("name")))

#pragma idata [name] __attribute__ ((section ("name")))

#pragma romdata [name] __attribute__ ((space (auto_psv)))

#pragma code [name] __attribute__ ((section ("name"),
 space (prog)))

#pragma interruptlow __attribute__ ((interrupt))

#pragma interrupt __attribute__ ((interrupt, shadow))

#pragma varlocate bank NA*

#pragma varlocate name NA*

*16-bit devices do not have banks.

PICC18 Attribute (MPLAB XC16)

#pragma psect old=new __attribute__ ((section ("name")))

const const or
 __attribute__ ((space (auto_psv)))

interrupt low_priority __attribute__ ((interrupt))

interrupt __attribute__ ((interrupt, shadow))

PICC18 #pragma psect oldbss=mybss
int gi;

C18 #pragma udata mybss
 int gi;

XC16 int __attribute__((__section__(".mybss"))) gi;
 2012-2018 Microchip Technology Inc. DS50002071G-page 261

MPLAB® XC16 C Compiler User’s Guide
TABLE 19-8: LOCATE THE VARIABLE MABONGA AT ADDRESS 0X100 IN DATA
MEMORY

TABLE 19-9: SPECIFY A VARIABLE TO BE PLACED IN PROGRAM MEMORY

TABLE 19-10: LOCATE THE FUNCTION PRINTSTRING AT ADDRESS 0X8000 IN
PROGRAM MEMORY

TABLE 19-11: COMPILER AUTOMATICALLY SAVES AND RESTORES THE
VARIABLES VAR1 AND VAR2

PICC18 int Mabonga @ 0x100;

C18 #pragma idata myDataSection=0x100;
 int Mabonga = 1;

XC16 int __attribute__((address(0x100))) Mabonga = 1;

PICC18 const char my_const_array[10] = {0,1,2,3,4,5,6,7,8,9};

C18 #pragma romdata const_table
const rom char my_const_array[10] =
 {0,1,2,3,4,5,6,7,8,9};

XC16 const or
__attribute__((space(auto_psv)))
 char my_const_array[10] = {0,1,2,3,4,5,6,7,8,9};

PICC18 int PrintString(const char *s)@ 0x8000 {...}

C18 #pragma code myTextSection=0x8000;
int PrintString(const char *s){...}

XC16 int __attribute__((address(0x8000))) PrintString
 (const char *s) {...}

PICC18 No equivalent

C18 #pragma interrupt isr0 save=var1, var2
 void isr0(void)
 {
 /* perform interrupt function here */
 }

XC16 void __attribute__((__interrupt__(__save__(var1,var2))))
 isr0(void)
 {
 /* perform interrupt function here */
 }
DS50002071G-page 262 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER

USER’S GUIDE

Chapter 20. Linking Programs
20.1 INTRODUCTION

The compiler will automatically invoke the linker unless the compiler has been
requested to stop after producing an intermediate file.

The linker will run with options that are obtained from the command-line driver. These
options specify the memory of the device and how objects should be placed in the
memory. Device-specific linker scripts are used.

The linker operation can be controlled using the driver, see Section 5.7.9 “Options for
Linking.” for more information.

The linker creates a map file which details the memory assigned and some objects
within the code. The map file is the best place to look for memory information. See
MPLAB® XC16 Assembler, Linker and Utilities User’s Guide (DS50002106) for an
explanation of the detailed information in this file.

20.2 DEFAULT MEMORY SPACES

The compiler defines several special purpose memory spaces to match architectural
features of 16-bit devices. Static and external variables may be allocated in the special
purpose memory spaces through use of the space attribute, described in
Section 8.11 “Variable Attributes.”.

data

General data space. Variables in general data space can be accessed using ordinary
C statements. This is the default allocation.

xmemory - dsPIC30F, dsPIC33EP/F devices only

X data address space. Variables in X data space can be accessed using ordinary C
statements. X data address space has special relevance for DSP-oriented libraries
and/or assembly language instructions.

ymemory - dsPIC30F, dsPIC33EP/F devices only

Y data address space. Variables in Y data space can be accessed using ordinary C
statements. Y data address space has special relevance for DSP-oriented libraries
and/or assembly language instructions.

prog

General program space, which is normally reserved for executable code. Variables in
this program space can not be accessed using ordinary C statements. They must be
explicitly accessed by the programmer, usually using table-access inline assembly
instructions, using the program space visibility window, or by qualifying with
__prog__.

DD

DD
 2012-2018 Microchip Technology Inc. DS50002071G-page 263

MPLAB® XC16 C Compiler User’s Guide
auto_psv

A compiler-managed area in program space, designated for program space visibility
window access. Variables in this space can be read (but not written) using ordinary C
statements and are subject to a maximum of 32K total space allocated.

psv

Program space, designated for program space visibility window access. Variables in
PSV space are not managed by the compiler and can not be accessed using ordinary
C statements. They must be explicitly accessed by the programmer, usually using
table-access inline assembly instructions, or using the program space visibility window.
Variables in PSV space can be accessed using a single setting of the PSVPAG register
or by qualifying with __psv__.

eedata - Devices with EEPROM Data (EEData) Memory only

EEData space, a region of 16-bit wide non-volatile memory located at high addresses
in program memory. Variables in EEData space cannot be accessed using ordinary C
statements. They must be explicitly accessed by the programmer, usually using
table-access inline assembly instructions, or using the program space visibility window.
The __HAS_EEDATA__ manifest constant is defined for devices that support EEData

dma - DMA capable devices only

DPSRAM DMA memory. Variables in DMA memory can be accessed using ordinary C
statements and by the DMA peripheral. The __HAS_DMA__ manifest constant is
defined for devices that support DMA. If the device supports DMA but does not have
special DPSRAM available, the linker will not be able to allocate the space and will
output an error.

DD

DD
DS50002071G-page 264 2012-2018 Microchip Technology Inc.

Linking Programs
20.3 REPLACING LIBRARY SYMBOLS

The MPLAB XC16 C Compiler comes with a librarian which allows you to unpack a
library file and replace modules with your own modified versions. See the MPLAB®
XC16 Assembler, Linker and Utilities User’s Guide (DS50002106). However, you can
easily replace a library module that is linked into your program without having to do this.

If you add a source file to your project which contains the definition for a routine with
the same name as a library routine, then the library routine will be replaced by your rou-
tine.

When trying to resolve a symbol (a function name or variable name, for example) the
compiler first scans all the source modules for the definition. Only if it cannot resolve
the symbol in these files does it then search the library files.

If the symbol is defined in a source file, the compiler will never actually search the librar-
ies for this symbol and no error will result even if the symbol was present in the library
files. This may not be true if a symbol is defined twice in source files and an error may
result if there is a conflict in the definitions.

Another method is to use the weak attribute when declaring a symbol. A weak symbol
may be superseded by a global definition. When weak is applied to a reference to an
external symbol, the symbol is not required for linking.

The weak attribute may be applied to functions as well as variables. Code may be writ-
ten such that the function will be used only if it is linked in from some other module.
Deciding whether or not to use the feature becomes a link-time decision, not a compile
time decision.

For more information on the weak attribute, see Section 8.11 “Variable Attributes.”

20.4 LINKER-DEFINED SYMBOLS

The 16-bit linker defines several symbols that may be used in your C code develop-
ment. Please see the MPLAB® XC16 Assembler, Linker and Utilities User’s Guide
(DS50002106) for more information.

A useful address symbol, _PROGRAM_END, is defined in program memory to mark the
highest address used by a CODE or PSV section. It should be referenced with the
address operator (&) in a built-in function call that accepts the address of an object in
program memory. This symbol can be used by applications as an end point for
checksum calculations.

For example:

unsigned int end_page, end_offset;
 _prog_addressT big_addr;

end_page = __builtin_tblpage(&_PROGRAM_END);
end_offset = __builtin_tbloffset(&_PROGRAM_END);

_init_prog_address(big_addr, _PROGRAM_END);
 2012-2018 Microchip Technology Inc. DS50002071G-page 265

MPLAB® XC16 C Compiler User’s Guide
20.5 DEFAULT LINKER SCRIPT

The command line always requires a linker script. However, if no linker script is
specified in an MPLAB IDE project, the IDE will use the device linker script file
(device.gld) included with the compiler as the default linker script. This
device-specific file contains information such as:

• Memory region definitions

• Program, data and debug sections mapping

• Interrupt and alternate interrupt vector table maps

• SFR address equates

• Base addresses for various peripherals

Linker scripts may be found, by default, in:

<install-dir>\support\DeviceFamily\gld

where DeviceFamily is the 16-bit device family, such as dsPIC30F.

To use a custom linker script in your project, simply add that file to the command line
or the project in the ““Linker Files” folder.
DS50002071G-page 266 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER

USER’S GUIDE

Appendix A. Implementation-Defined Behavior
A.1 INTRODUCTION

This section offers implementation-defined behavior of the MPLAB XC16 C Compiler.
The ISO standard for C requires that vendors document the specifics of
“implementation defined” features of the language.

Items discussed are:

• Translation

• Environment

• Identifiers

• Characters

• Integers

• Floating Point

• Arrays and Pointers

• Registers

• Structures, Unions, Enumerations and Bit-Fields

• Qualifiers

• Declarators

• Statements

• Preprocessing Directives

• Library Functions

• Signals

• Streams and Files

• Temporary File (tmpfile)

• Error Number (errno)

• Memory

• Abort (abort)

• Exit (exit)

• Getenv (getenv)

• System (system)

• Strerror (strerror)
 2012-2018 Microchip Technology Inc. DS50002071G-page 267

MPLAB® XC16 C Compiler User’s Guide
A.2 TRANSLATION

Implementation-Defined Behavior for Translation is covered in section G.3.1 of the
ANSI C Standard.

Is each non-empty sequence of white-space characters, other than new line, retained
or is it replaced by one space character? (ISO 5.1.1.2)

It is replaced by one space character.

How is a diagnostic message identified? (ISO 5.1.1.3)

Diagnostic messages are identified by prefixing them with the source file name and line
number corresponding to the message, separated by colon characters (‘:’).

Are there different classes of message? (ISO 5.1.1.3)

Yes.

If yes, what are they? (ISO 5.1.1.3)

Errors, which inhibit production of an output file, and warnings, which do not inhibit
production of an output file.

What is the translator return status code for each class of message? (ISO 5.1.1.3)

The return status code for errors is 1; for warnings it is 0.

Can a level of diagnostic be controlled? (ISO 5.1.1.3)

Yes.

If yes, what form does the control take? (ISO 5.1.1.3)

Compiler command-line options may be used to request or inhibit the generation of
warning messages.

A.3 ENVIRONMENT

Implementation-Defined Behavior for Environment is covered in section G.3.2 of the
ANSI C Standard.

What library facilities are available to a freestanding program? (ISO 5.1.2.1)

All of the facilities of the standard C library are available, provided that a small set of
functions is customized for the environment, as described in the “Run Time Libraries”
section.

Describe program termination in a freestanding environment. (ISO 5.1.2.1)

If the function main returns or the function exit is called, a HALT instruction is executed
in an infinite loop. This behavior is customizable.

Describe the arguments (parameters) passed to the function main? (ISO 5.1.2.2.1)

No parameters are passed to main.

Which of the following is a valid interactive device: (ISO 5.1.2.3)

Asynchronous terminal No

Paired display and keyboard No

Inter program connection No

Other, please describe? None
DS50002071G-page 268 2012-2018 Microchip Technology Inc.

Implementation-Defined Behavior
A.4 IDENTIFIERS

Implementation-Defined Behavior for Identifiers is covered in section G.3.3 of the ANSI
C Standard.

How many characters beyond thirty-one (31) are significant in an identifier without
external linkage? (ISO 6.1.2)

All characters are significant.

How many characters beyond six (6) are significant in an identifier with external
linkage? (ISO 6.1.2)

All characters are significant.

Is case significant in an identifier with external linkage? (ISO 6.1.2)

Yes.

A.5 CHARACTERS

Implementation-Defined Behavior for Characters is covered in section G.3.4 of the
ANSI C Standard.

Detail any source and execution characters which are not explicitly specified by the
Standard? (ISO 5.2.1)

None.

List escape sequence value produced for listed sequences. (ISO 5.2.2)

TABLE A-1: ESCAPE SEQUENCE CHARACTERS AND VALUES

How many bits are in a character in the execution character set? (ISO 5.2.4.2)

8.

What is the mapping of members of the source character sets (in character and string
literals) to members of the execution character set? (ISO 6.1.3.4)

The identity function.

What is the equivalent type of a plain char? (ISO 6.2.1.1)

Either (user defined). The default is signed char. A compiler command-line option
may be used to make the default unsigned char.

Sequence Value

\a 7

\b 8

\f 12

\n 10

\r 13

\t 9

\v 11
 2012-2018 Microchip Technology Inc. DS50002071G-page 269

MPLAB® XC16 C Compiler User’s Guide
A.6 INTEGERS

Implementation-Defined Behavior for Integers is covered in section G.3.5 of the ANSI
C Standard.

The following table describes the amount of storage and range of various types of
integers: (ISO 6.1.2.5)

What is the result of converting an integer to a shorter signed integer, or the result of
converting an unsigned integer to a signed integer of equal length, if the value cannot
be represented? (ISO 6.2.1.2)

There is a loss of significance. No error is signaled.

What are the results of bitwise operations on signed integers? (ISO 6.3)

Shift operators retain the sign. Other operators act as if the operand(s) are unsigned
integers.

What is the sign of the remainder on integer division? (ISO 6.3.5)

+

What is the result of a right shift of a negative-valued signed integral type? (ISO 6.3.7)

The sign is retained.

TABLE A-2: INTEGER TYPES

Designation Size (bits) Range

char 8 -128 … 127

signed char 8 -128 … 127

unsigned char 8 0 … 255

short 16 -32768 … 32767

signed short 16 -32768 … 32767

unsigned short 16 0 … 65535

int 16 -32768 … 32767

signed int 16 -32768 … 32767

unsigned int 16 0 … 65535

long 32 -2147483648 … 2147438647

signed long 32 -2147483648 … 2147438647

unsigned long 32 0 … 4294867295
DS50002071G-page 270 2012-2018 Microchip Technology Inc.

Implementation-Defined Behavior
A.7 FLOATING POINT

Implementation-Defined Behavior for Floating Point is covered in section G.3.6 of the
ANSI C Standard.

Is the scaled value of a floating constant that is in the range of the representable value
for its type, the nearest representable value, or the larger representable value immedi-
ately adjacent to the nearest representable value, or the smallest representable value
immediately adjacent to the nearest representable value? (ISO 6.1.3.1)

The nearest representable value.

The following table describes the amount of storage and range of various types of
floating point numbers: (ISO 6.1.2.5)

What is the direction of truncation, when an integral number is converted to a
floating-point number, that cannot exactly represent the original value? (ISO 6.2.1.3)

Down.

What is the direction of truncation, or rounding, when a floating-point number is
converted to a narrower floating-point number? (ISO 6.2.1.4)

Down.

A.8 ARRAYS AND POINTERS

Implementation-Defined Behavior for Arrays and Pointers is covered in section G.3.7
of the ANSI C Standard.

What is the type of the integer required to hold the maximum size of an array that is,
the type of the size of operator, size_t? (ISO 6.3.3.4, ISO 7.1.1)

unsigned int.

What is the size of integer required for a pointer to be converted to an integral type?
(ISO 6.3.4)

16 bits.

What is the result of casting a pointer to an integer, or vice versa? (ISO 6.3.4)

The mapping is the identity function.

What is the type of the integer required to hold the difference between two pointers to
members of the same array, ptrdiff_t? (ISO 6.3.6, ISO 7.1.1)

unsigned int.

TABLE A-3: FLOATING-POINT TYPES

Designation Size (bits) Range

float 32 1.175494e-38 … 3.40282346e+38

double* 32 1.175494e-38 … 3.40282346e+38

long double 64 2.22507385e-308 … 1.79769313e+308

* double is equivalent to long double if -fno-short-double is used.
 2012-2018 Microchip Technology Inc. DS50002071G-page 271

MPLAB® XC16 C Compiler User’s Guide
A.9 REGISTERS

Implementation-Defined Behavior for Registers is covered in section G.3.8 of the ANSI
C Standard.

To what extent does the storage class specifier register actually effect the storage
of objects in registers? (ISO 6.5.1)

If optimization is disabled, an attempt will be made to honor the register storage
class; otherwise, it is ignored.

A.10 STRUCTURES, UNIONS, ENUMERATIONS AND BIT-FIELDS

Implementation-Defined Behavior for Structures, Unions, Enumerations and Bit-Fields
is covered in sections A.6.3.9 and G.3.9 of the ANSI C Standard.

What are the results if a member of a union object is accessed using a member of a
different type? (ISO 6.3.2.3)

No conversions are applied.

Describe the padding and alignment of members of structures? (ISO 6.5.2.1)

Chars are byte-aligned. All other objects are word-aligned.

What is the equivalent type for a plain int bitfield? (ISO 6.5.2.1)

User defined. By default, signed int bitfield. May be made an unsigned int
bitfield using a command line option.

What is the order of allocation of bit-fields within an int? (ISO 6.5.2.1)

Bits are allocated from least-significant to most-significant.

Can a bit-field straddle a storage-unit boundary? (ISO 6.5.2.1)

Yes.

Which integer type has been chosen to represent the values of an enumeration type?
(ISO 6.5.2.2)

int.

A.11 QUALIFIERS

Implementation-Defined Behavior for Qualifiers is covered in section G.3.10 of the
ANSI C Standard.

Describe what action constitutes an access to an object that has volatile-qualified type?
(ISO 6.5.3)

If an object is named in an expression, it has been accessed.

A.12 DECLARATORS

Implementation-Defined Behavior for Declarators is covered in section G.3.11 of the
ANSI C Standard.

What is the maximum number of declarators that may modify an arithmetic, structure,
or union type? (ISO 6.5.4)

No limit.

A.13 STATEMENTS

Implementation-Defined Behavior for Statements is covered in section G.3.12 of the
ANSI C Standard.

What is the maximum number of case values in a switch statement? (ISO 6.6.4.2)

No limit.
DS50002071G-page 272 2012-2018 Microchip Technology Inc.

Implementation-Defined Behavior
A.14 PREPROCESSING DIRECTIVES

Implementation-Defined Behavior for Preprocessing Directives is covered in section
G.3.13 of the ANSI C Standard.

Does the value of a single-character constant in a constant expression, that controls
conditional inclusion, match the value of the same character constant in the execution
character set? (ISO 6.8.1)

Yes.

Can such a character constant have a negative value? (ISO 6.8.1)

Yes.

What method is used for locating includable source files? (ISO 6.8.2)

The preprocessor searches the current directory, followed by directories named using
command-line options.

How are headers identified, or the places specified? (ISO 6.8.2)

The headers are identified on the #include directive, enclosed between < and >
delimiters, or between “ and ” delimiters. The places are specified using command-line
options.

Are quoted names supported for includable source files? (ISO 6.8.2)

Yes.

What is the mapping between delimited character sequences and external source file
names? (ISO 6.8.2)

The identity function.

Describe the behavior of each recognized #pragma directive. (ISO 6.8.6)

What are the definitions for __ DATE __ and __ TIME __ respectively, when the date
and time of translation are not available? (ISO 6.8.8)

Not applicable. The compiler is not supported in environments where these functions
are not available.

TABLE A-4: #PRAGMA BEHAVIOR

Pragma Behavior

#pragma code section-name Names the code section.

#pragma code Resets the name of the code section to its default
(viz., .text).

#pragma config Sets configuration bits or registers.

#pragma idata section-name Names the initialized data section.

#pragma idata Resets the name of the initialized data section to its
default value (viz., .data).

#pragma udata section-name Names the uninitialized data section.

#pragma udata Resets the name of the uninitialized data section to
its default value (viz., .bss).

#pragma interrupt
 function-name

Designates function-name as an interrupt function.
 2012-2018 Microchip Technology Inc. DS50002071G-page 273

MPLAB® XC16 C Compiler User’s Guide
A.15 LIBRARY FUNCTIONS

Implementation-Defined Behavior for Library Functions is covered in section G.3.14 of
the ANSI C Standard.

What is the null pointer constant to which the macro NULL expands? (ISO 7.1.5)

0.

How is the diagnostic printed by the assert function recognized, and what is the
termination behavior of this function? (ISO 7.2)

The assert function prints the file name, line number and test expression, separated by
the colon character (‘:’). It then calls the abort function.

What characters are tested for by the isalnum, isalpha, iscntrl, islower, isprint and
isupper functions? (ISO 7.3.1)

What values are returned by the mathematics functions after a domain errors?
(ISO 7.5.1)

NaN.

Do the mathematics functions set the integer expression errno to the value of the
macro ERANGE on underflow range errors? (ISO 7.5.1)

Yes.

Do you get a domain error or is zero returned when the fmod function has a second
argument of zero? (ISO 7.5.6.4)

Domain error.

TABLE A-5: CHARACTERS TESTED BY IS FUNCTIONS

Function Characters tested

isalnum One of the letters or digits: isalpha or isdigit.

isalpha One of the letters: islower or isupper.

iscntrl One of the five standard motion control characters, backspace and alert:
\f, \n, \r, \t, \v, \b, \a.

islower One of the letters ‘a’ through ‘z’.

isprint A graphic character or the space character: isalnum or ispunct or
space.

isupper One of the letters ‘A’ through ‘Z’.

ispunct One of the characters: ! " # % & ' () ; < = > ? [\] * + , - . / : ^
DS50002071G-page 274 2012-2018 Microchip Technology Inc.

Implementation-Defined Behavior
A.16 SIGNALS

What is the set of signals for the signal function? (ISO 7.7.1.1)

Describe the parameters and the usage of each signal recognized by the signal
function. (ISO 7.7.1.1)

Application defined.

Describe the default handling and the handling at program startup for each signal
recognized by the signal function? (ISO 7.7.1.1)

None.

If the equivalent of signal (sig,SIG_DFL) is not executed prior to the call of a signal
handler, what blocking of the signal is performed? (ISO 7.7.1.1)

None.

Is the default handling reset if a SIGILL signal is received by a handler specified to the
signal function? (ISO 7.7.1.1)

No.

TABLE A-6: SIGNAL FUNCTION

Name Description

SIGABRT Abnormal termination.

SIGINT Receipt of an interactive attention signal.

SIGILL Detection of an invalid function image.

SIGFPE An erroneous arithmetic operation.

SIGSEGV An invalid access to storage.

SIGTERM A termination request sent to the program.
 2012-2018 Microchip Technology Inc. DS50002071G-page 275

MPLAB® XC16 C Compiler User’s Guide
A.17 STREAMS AND FILES

Does the last line of a text stream require a terminating new line character? (ISO 7.9.2)

No.

Do space characters, that are written out to a text stream immediately before a new line
character, appear when the stream is read back in? (ISO 7.9.2)

Yes.

How many null characters may be appended to data written to a binary stream?
(ISO 7.9.2)

None.

Is the file position indicator of an append mode stream initially positioned at the start or
end of the file? (ISO 7.9.3)

Start.

Does a write on a text stream cause the associated file to be truncated beyond that
point? (ISO 7.9.3)

Application defined.

Describe the characteristics of file buffering. (ISO 7.9.3)

Fully buffered.

Can zero-length file actually exist? (ISO 7.9.3)

Yes.

What are the rules for composing a valid file name? (ISO 7.9.3)

Application defined.

Can the same file be open multiple times? (ISO 7.9.3)

Application defined.

What is the effect of the remove function on an open file? (ISO 7.9.4.1)

Application defined.

What is the effect if a file with the new name exists prior to a call to the rename function?
(ISO 7.9.4.2)

Application defined.

What is the form of the output for %p conversion in the fprintf function? (ISO 7.9.6.1)

A hexadecimal representation.

What form does the input for %p conversion in the fscanf function take? (ISO 7.9.6.2)

A hexadecimal representation.
DS50002071G-page 276 2012-2018 Microchip Technology Inc.

Implementation-Defined Behavior
A.18 TMPFILE

Is an open temporary file removed if the program terminates abnormally? (ISO 7.9.4.3)

Yes.

A.19 ERRNO

What value is the macro errno set to by the fgetpos or ftell function on failure?
(ISO 7.9.9.1, (ISO 7.9.9.4)

Application defined.

What is the format of the messages generated by the perror function? (ISO 7.9.10.4)

The argument to perror, followed by a colon, followed by a text description of the
value of errno.

A.20 MEMORY

What is the behavior of the calloc, malloc or realloc function if the size requested
is zero? (ISO 7.10.3)

A block of zero length is allocated.

A.21 ABORT

What happens to open and temporary files when the abort function is called?
(ISO 7.10.4.1)

Nothing.

A.22 EXIT

What is the status returned by the exit function if the value of the argument is other than
zero, EXIT_SUCCESS, or EXIT_FAILURE? (ISO 7.10.4.3)

The value of the argument.

A.23 GETENV

What limitations are there on environment names? (ISO 7.10.4.4)

Application defined.

Describe the method used to alter the environment list obtained by a call to the getenv
function. (ISO 7.10.4.4)

Application defined.

A.24 SYSTEM

Describe the format of the string that is passed to the system function. (ISO 7.10.4.5)

Application defined.

What mode of execution is performed by the system function? (ISO 7.10.4.5)

Application defined.
 2012-2018 Microchip Technology Inc. DS50002071G-page 277

MPLAB® XC16 C Compiler User’s Guide
A.25 STRERROR

Describe the format of the error message output by the strerror function.
(ISO 7.11.6.2)

A plain character string.

List the contents of the error message strings returned by a call to the strerror
function. (ISO 7.11.6.2)

TABLE A-7: ERROR MESSAGE STRINGS

Errno Message

0 No error

EDOM Domain error

ERANGE Range error

EFPOS File positioning error

EFOPEN File open error

nnn Error #nnn
DS50002071G-page 278 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER

USER’S GUIDE

Appendix B. Embedded Compiler Compatibility Mode
B.1 INTRODUCTION

All three MPLAB XC C compilers can be placed into a compatibility mode. In this mode,
they are syntactically compatible with the non-standard C language extensions used by
other non-Microchip embedded compiler vendors. This compatibility allows C source
code written for other compilers to be compiled with minimum modification when using
the MPLAB XC compilers.

Since very different device architectures may be targeted by other compilers, the
semantics of the non-standard extensions may be different to that in the MPLAB XC
compilers. This document indicates when the original C code may need to be reviewed.

The compatibility features offered by the MPLAB C compilers are discussed in the
following topics:

• Compiling in Compatibility Mode

• Syntax Compatibility

• Data Type

• Operator

• Extended Keywords

• Intrinsic Functions

• Pragmas
 2012-2018 Microchip Technology Inc. DS50002071G-page 279

MPLAB® XC16 C Compiler User’s Guide
B.2 COMPILING IN COMPATIBILITY MODE

An option is used to enable vendor-specific syntax compatibility. When using MPLAB
XC8, this option is --ext=vendor; when using MPLAB XC16 or MPLAB XC32, the
option is -mext=vendor. The argument vendor is a key that is used to represent the
syntax. See Table B-1 for a list of all keys usable with the MPLAB XC compilers.

The Common C Interface is a language standard that is common to all Microchip
MPLAB XC compilers. The non-standard extensions associated with this syntax are
already described in Chapter 2. “Common C Interface” and are not repeated here.

B.3 SYNTAX COMPATIBILITY

The goal of this syntax compatibility feature is to ease the migration process when
porting source code from other C compilers to the native MPLAB XC compiler syntax.

Many non-standard extensions are not required when compiling for Microchip devices
and, for these, there are no equivalent extensions offered by MPLAB XC compilers.
These extensions are then simply ignored by the MPLAB XC compilers, although a
warning message is usually produced to ensure you are aware of the different compiler
behavior. You should confirm that your project will still operate correctly with these
features disabled.

Other non-standard extensions are not compatible with Microchip devices. Errors will
be generated by the MPLAB XC compiler if these extensions are not removed from the
source code. You should review the ramifications of removing the extension and decide
whether changes are required to other source code in your project.

Table B-2 indicates the various levels of compatibility used in the tables that are
presented throughout this guide.

Note that even if a C feature is supported by an MPLAB XC compiler, addresses, reg-
ister names, assembly instructions, or any other device-specific argument is unlikely to
be valid when compiling for a Microchip device. Always review code which uses these
items in conjunction with the data sheet of your target Microchip device.

TABLE B-1: VENDOR KEYS

Vendor
key

Syntax
XC8

Support
XC16

Support
XC32

Support

cci Common C Interface Yes Yes Yes

iar IAR C/C++ CompilerTM for ARM Yes Yes Yes

TABLE B-2: LEVEL OF SUPPORT INDICATORS

Level Explanation

support The syntax is accepted in the specified compatibility mode, and its
meaning will mimic its meaning when it is used with the original compiler.

support (no args) In the case of pragmas, the base pragma is supported in the specified
compatibility mode, but the arguments are ignored.

native support The syntax is equivalent to that which is already accepted by the MPLAB
XC compiler, and the semantics are compatible. You can use this feature
without a vendor compatibility mode having been enabled.

ignore The syntax is accepted in the specified compatibility mode, but the implied
action is not required or performed. The extension is ignored and a warning
will be issued by the compiler.

error The syntax is not accepted in the specified compatibility mode. An error will
be issued and compilation will be terminated.
DS50002071G-page 280 2012-2018 Microchip Technology Inc.

Embedded Compiler Compatibility Mode
B.4 DATA TYPE

Some compilers allow use of the boolean type, bool, as well as associated values
true and false, as specified by the C99 ANSI Standard. This type and these values
may be used by all MPLAB XC compilers when in compatibility mode1, as shown in
Table B-3.

As indicated by the ANSI Standard, the <stdbool.h> header must be included for this
feature to work as expected when it is used with MPLAB XC compilers.

Do not confuse the boolean type, bool, and the integer type, bit, implemented by
MPLAB XC8.

B.5 OPERATOR

The @ operator may be used with other compilers to indicate the desired memory loca-
tion of an object. As Table B-4 indicates, support for this syntax in MPLAB C is limited
to MPLAB XC8 only.

Any address specified with another device is unlikely to be correct on a new architec-
ture. Review the address in conjunction with the data sheet for your target Microchip
device.

Using @ in a compatibility mode with MPLAB XC8 will work correctly, but will generate
a warning. To prevent this warning from appearing again, use the reviewed address
with the MPLAB C __at() specifier instead.

For MPLAB XC16/32, consider using the address attribute.

1. Not all C99 features have been adopted by all Microchip MPLAB XC compilers.

TABLE B-3: SUPPORT FOR C99 BOOL TYPE

IAR Compatibility Mode

Type XC8 XC16 XC32

bool support support support

TABLE B-4: SUPPORT FOR NON-STANDARD OPERATOR

IAR Compatibility Mode

Operator XC8 XC16 XC32

@ native support error error
 2012-2018 Microchip Technology Inc. DS50002071G-page 281

MPLAB® XC16 C Compiler User’s Guide
B.6 EXTENDED KEYWORDS

Non-standard extensions often specify how objects are defined or accessed. Keywords
are usually used to indicate the feature. The non-standard C keywords corresponding
to other compilers are listed in Table B-5, as well as the level of compatibility offered by
MPLAB XC compilers. The table notes offer more information about some extensions.

Note 1: All assembly code specified by this construct is device-specific and will need review
when porting to any Microchip device.

2: The keyword, asm, is supported natively by MPLAB XC8, but this compiler only sup-
ports the __asm keyword in IAR compatibility mode.

3: This is the default (and only) endianism used by all MPLAB XC compilers.

4: When used with MPLAB XC32, this must be used with the __longcall__ macro
for full compatibility.

5: Although this keyword is ignored, by default, all structures are packed when using
MPLAB XC8, so there is no loss of functionality.

TABLE B-5: SUPPORT FOR NON-STANDARD KEYWORDS

IAR Compatibility Mode

Keyword XC8 XC16 XC32

__section_begin ignore support support

__section_end ignore support support

__section_size ignore support support

__segment_begin ignore support support

__segment_end ignore support support

__segment_size ignore support support

__sfb ignore support support

__sfe ignore support support

__sfs ignore support support

__asm or asm(1) support(2) native support native support

__arm ignore ignore ignore

__big_endian error error error

__fiq support error error

__intrinsic ignore ignore ignore

__interwork ignore ignore ignore

__irq support error error

__little_endian(3) ignore ignore ignore

__nested ignore ignore ignore

__no_init support support support

__noreturn ignore support support

__ramfunc ignore ignore support(4)

__packed ignore(5) support support

__root ignore support support

__swi ignore ignore ignore

__task ignore support support

__weak ignore support support

__thumb ignore ignore ignore

__farfunc ignore ignore ignore

__huge ignore ignore ignore

__nearfunc ignore ignore ignore

__inline support native support native support
DS50002071G-page 282 2012-2018 Microchip Technology Inc.

Embedded Compiler Compatibility Mode
B.7 INTRINSIC FUNCTIONS

Intrinsic functions can be used to perform common tasks in the source code. The
MPLAB XC compilers’ support for the intrinsic functions offered by other compilers is
shown in Table B-6.

Note 1: These intrinsic functions map to macros which disable or enable the global interrupt
enable bit on 8-bit PIC® devices.

The header file <xc.h> must be included for supported functions to operate correctly.

TABLE B-6: SUPPORT FOR NON-STANDARD INTRINSIC FUNCTIONS

IAR Compatibility Mode

Function XC8 XC16 XC32

__disable_fiq(1) support ignore ignore

__disable_interrupt support support support

__disable_irq(1) support ignore ignore

__enable_fiq(1) support ignore ignore

__enable_interrupt support support support

__enable_irq(1) support ignore ignore

__get_interrupt_state ignore support support

__set_interrupt_state ignore support support
 2012-2018 Microchip Technology Inc. DS50002071G-page 283

MPLAB® XC16 C Compiler User’s Guide
B.8 PRAGMAS

Pragmas may be used by a compiler to control code generation. Any compiler will
ignore an unknown pragma, but many pragmas implemented by another compiler have
also been implemented by the MPLAB XC compilers in compatibility mode. Table B-7
shows the pragmas and the level of support when using each of the MPLAB XC
compilers.

Many of these pragmas take arguments. Even if a pragma is supported by an MPLAB
XC compiler, this support may not apply to all of the pragma’s arguments. This is
indicated in the following table.

TABLE B-7: SUPPORT FOR NON-STANDARD PRAGMAS

IAR Compatibility Mode

Pragma XC8 XC16 XC32

bitfields ignore ignore ignore

data_alignment ignore support support

diag_default ignore ignore ignore

diag_error ignore ignore ignore

diag_remark ignore ignore ignore

diag_suppress ignore ignore ignore

diag_warning ignore ignore ignore

include_alias ignore ignore ignore

inline support (no args) support (no args) support (no args)

language ignore ignore ignore

location ignore support support

message support native support native support

object_attribute ignore ignore ignore

optimize ignore native support native support

pack ignore native support native support

__printf_args support support support

required ignore support support

rtmodel ignore ignore ignore

__scanf__args ignore support support

section ignore support support

segment ignore support support

swi_number ignore ignore ignore

type_attribute ignore ignore ignore

weak ignore native support native support
DS50002071G-page 284 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER

USER’S GUIDE

Appendix C. Diagnostics
C.1 INTRODUCTION

This appendix lists the most common diagnostic messages generated by the MPLAB
XC16 C Compiler.

The compiler can produce two kinds of diagnostic messages: Errors and Warnings.
Each kind has a different purpose.

• Error messages report problems that make it impossible to compile your program.
The compiler reports errors with the source file name, and the line number where
the problem is apparent.

• Warning messages report other unusual conditions in your code that may indicate
a problem, although compilation can (and does) proceed. Warning messages also
report the source file name and line number, but include the text warning: to
distinguish them from error messages.

Warnings may indicate danger points that should be checked to ensure that your
program performs as directed. A warning may signal that obsolete features or
non-standard features of the compiler are being used. Many warnings are issued
only if you ask for them with one of the -W options (for instance,-Wall requests a
variety of useful warnings).

In rare instances, the compiler may issue an internal error message report. This
signifies that the compiler itself has detected a fault that should be reported to
Microchip Support. Details on contacting support are located in the Preface.

C.2 ERRORS

Symbols

\x used with no following HEX digits

The escape sequence \x should be followed by hex digits.

‘&’ constraint used with no register class

The asm statement is invalid.

‘%’ constraint used with last operand

The asm statement is invalid.

#elif after #else

In a preprocessor conditional, the #else clause must appear after any #elif clauses.

#elif without #if

In a preprocessor conditional, the #if must be used before using the #elif.

#else after #else

In a preprocessor conditional, the #else clause must appear only once.

#else without #if

In a preprocessor conditional, the #if must be used before using the #else.
 2012-2018 Microchip Technology Inc. DS50002071G-page 285

MPLAB® XC16 C Compiler User’s Guide
#endif without #if

In a preprocessor conditional, the #if must be used before using the #endif.

#error ‘message’

This error appears in response to a #error directive.

#if with no expression

An expression that evaluates to a constant arithmetic value was expected.

#include expects “FILENAME” or <FILENAME>

The file name for the #include is missing or incomplete. It must be enclosed by quotes
or angle brackets.

‘#’ is not followed by a macro parameter

The stringsize operator, ‘#’ must be followed by a macro argument name.

‘#keyword’ expects “FILENAME” or <FILENAME>

The specified ‘#keyword’ expects a quoted or bracketed file name as an argument.

‘#’ is not followed by a macro parameter

The ‘#’ operator should be followed by a macro argument name.

‘##’ cannot appear at either end of a macro expansion

The concatenation operator, ‘##’ may not appear at the start or the end of a macro
expansion.

A

a parameter list with an ellipsis can’t match an empty parameter name list
declaration

The declaration and definition of a function must be consistent.

“symbol” after #line is not a positive integer

 #line is expecting a source line number which must be positive.

aggregate value used where a complex was expected

Do not use aggregate values where complex values are expected.

aggregate value used where a float was expected

Do not use aggregate values where floating-point values are expected.

aggregate value used where an integer was expected

Do not use aggregate values where integer values are expected.

alias arg not a string

The argument to the alias attribute must be a string that names the target for which the
current identifier is an alias.

alignment may not be specified for ‘identifier’

The aligned attribute may only be used with a variable.

‘__alignof’ applied to a bit-field

The ‘__alignof’ operator may not be applied to a bit-field.

alternate interrupt vector is not a constant

The interrupt vector number must be an integer constant.

alternate interrupt vector number n is not valid

A valid interrupt vector number is required.
DS50002071G-page 286 2012-2018 Microchip Technology Inc.

Diagnostics
ambiguous abbreviation argument

The specified command-line abbreviation is ambiguous.

an argument type that has a default promotion can’t match an empty parameter
name list declaration.

The declaration and definition of a function must be consistent.

args to be formatted is not ...

The first-to-check index argument of the format attribute specifies a parameter that is
not declared ‘…’.

argument ‘identifier’ doesn’t match prototype

Function argument types should match the function’s prototype.

argument of ‘asm’ is not a constant string

The argument of ‘asm’ must be a constant string.

argument to ‘-B’ is missing

The directory name is missing.

argument to ‘-l’ is missing

The library name is missing.

argument to ‘-specs=’ is missing

The name of the specs file is missing.

argument to ‘-x’ is missing

The language name is missing.

argument to ‘-Xlinker’ is missing

The argument to be passed to the linker is missing.

arithmetic on pointer to an incomplete type

Arithmetic on a pointer to an incomplete type is not allowed.

array index in non-array initializer

Do not use array indices in non-array initializers.

array size missing in ‘identifier’

An array size is missing.

array subscript is not an integer

Array subscripts must be integers.

‘asm’ operand constraint incompatible with operand size

The asm statement is invalid.

‘asm’ operand requires impossible reload

The asm statement is invalid.

asm template is not a string constant

Asm templates must be string constants.

assertion without predicate

#assert or #unassert must be followed by a predicate, which must be a single identifier.

‘attribute’ attribute applies only to functions

The attribute ‘attribute’ may only be applied to functions.
 2012-2018 Microchip Technology Inc. DS50002071G-page 287

MPLAB® XC16 C Compiler User’s Guide
B

bit-field ‘identifier’ has invalid type

Bit-fields must be of enumerated or integral type.

bit-field ‘identifier’ width not an integer constant

Bit-field widths must be integer constants.

both long and short specified for ‘identifier’

A variable cannot be of type long and of type short.

both signed and unsigned specified for ‘identifier’

A variable cannot be both signed and unsigned.

braced-group within expression allowed only inside a function

It is illegal to have a braced-group within expression outside a function.

break statement not within loop or switch

Break statements must only be used within a loop or switch.

__builtin_longjmp second argument must be 1

__builtin_longjmp requires its second argument to be 1.

C

called object is not a function

Only functions may be called in C.

cannot convert to a pointer type

The expression cannot be converted to a pointer type.

cannot put object with volatile field into register

It is not legal to put an object with a volatile field into a register.

cannot reload integer constant operand in ‘asm’

The asm statement is invalid.

cannot specify both near and far attributes

The attributes near and far are mutually exclusive, only one may be used for a function
or variable.

cannot take address of bit-field ‘identifier’

It is not legal to attempt to take address of a bit-field.

can’t open ‘file’ for writing

The system cannot open the specified ‘file’. Possible causes are not enough disk
space to open the file, the directory does not exist, or there is no write permission in the
destination directory.

can’t set ‘attribute’ attribute after definition

The ‘attribute’ attribute must be used when the symbol is defined.

case label does not reduce to an integer constant

Case labels must be compile-time integer constants.

case label not within a switch statement

Case labels must be within a switch statement.

cast specifies array type

It is not permissible for a cast to specify an array type.
DS50002071G-page 288 2012-2018 Microchip Technology Inc.

Diagnostics
cast specifies function type

It is not permissible for a cast to specify a function type.

cast to union type from type not present in union

When casting to a union type, do so from type present in the union.

char-array initialized from wide string

Char-arrays should not be initialized from wide strings. Use ordinary strings.

file: compiler compiler not installed on this system

Only the C compiler is distributed; other high-level languages are not supported.

complex invalid for ‘identifier’

The complex qualifier may only be applied to integral and floating types.

conflicting types for ‘identifier’

Multiple, inconsistent declarations exist for identifier.

continue statement not within loop

Continue statements must only be used within a loop.

conversion to non-scalar type requested

Type conversion must be to a scalar (not aggregate) type.

D

data type of ‘name’ isn’t suitable for a register

The data type does not fit into the requested register.

declaration for parameter ‘identifier’ but no such parameter

Only parameters in the parameter list may be declared.

declaration of ‘identifier’ as array of functions

It is not legal to have an array of functions.

declaration of ‘identifier’ as array of voids

It is not legal to have an array of voids.

‘identifier’ declared as function returning a function

Functions may not return functions.

‘identifier’ declared as function returning an array

Functions may not return arrays.

decrement of pointer to unknown structure

Do not decrement a pointer to an unknown structure.

‘default’ label not within a switch statement

Default case labels must be within a switch statement.

‘symbol’ defined both normally and as an alias

A ‘symbol’ can not be used as an alias for another symbol if it has already been
defined.

‘defined’ cannot be used as a macro name

The macro name cannot be called ‘defined’.

dereferencing pointer to incomplete type

A dereferenced pointer must be a pointer to an incomplete type.
 2012-2018 Microchip Technology Inc. DS50002071G-page 289

MPLAB® XC16 C Compiler User’s Guide
division by zero in #if

Division by zero is not computable.

duplicate case value

Case values must be unique.

duplicate label ‘identifier’

Labels must be unique within their scope.

duplicate macro parameter ‘symbol’

‘symbol’ has been used more than once in the parameter list.

duplicate member ‘identifier’

Structures may not have duplicate members.

duplicate (or overlapping) case value

Case ranges must not have a duplicate or overlapping value. The error message ‘this
is the first entry overlapping that value’ will provide the location of the first occurrence
of the duplicate or overlapping value. Case ranges are an extension of the ANSI
standard for the compiler.

E

elements of array ‘identifier’ have incomplete type

Array elements should have complete types.

empty character constant

Empty character constants are not legal.

empty file name in ‘#keyword’

The file name specified as an argument of the specified #keyword is empty.

empty index range in initializer

Do not use empty index ranges in initializers

empty scalar initializer

Scalar initializers must not be empty.

enumerator value for ‘identifier’ not integer constant

Enumerator values must be integer constants.

error closing ‘file’

The system cannot close the specified ‘file’. Possible causes are not enough disk
space to write to the file or the file is too big.

error writing to ‘file’

The system cannot write to the specified ‘file’. Possible causes are not enough disk
space to write to the file or the file is too big.

excess elements in char array initializer

There are more elements in the list than the initializer value states.

excess elements in struct initializer

Do not use excess elements in structure initializers.

expression statement has incomplete type

The type of the expression is incomplete.

extra brace group at end of initializer

Do not place extra brace groups at the end of initializers.
DS50002071G-page 290 2012-2018 Microchip Technology Inc.

Diagnostics
extraneous argument to ‘option’ option

There are too many arguments to the specified command-line option.

F

‘identifier’ fails to be a typedef or built in type

A data type must be a typedef or built-in type.

field ‘identifier’ declared as a function

Fields may not be declared as functions.

field ‘identifier’ has incomplete type

Fields must have complete types.

first argument to __builtin_choose_expr not a constant

The first argument must be a constant expression that can be determined at compile
time.

flexible array member in otherwise empty struct

A flexible array member must be the last element of a structure with more than one
named member.

flexible array member in union

A flexible array member cannot be used in a union.

flexible array member not at end of struct

A flexible array member must be the last element of a structure.

‘for’ loop initial declaration used outside C99 mode

A ‘for’ loop initial declaration is not valid outside C99 mode.

format string arg follows the args to be formatted

The arguments to the format attribute are inconsistent. The format string argument
index must be less than the index of the first argument to check.

format string arg not a string type

The format string index argument of the format attribute specifies a parameter which is
not a string type.

format string has invalid operand number

The operand number argument of the format attribute must be a compile-time constant.

function definition declared ‘register’

Function definitions may not be declared ‘register’.

function definition declared ‘typedef’

Function definitions may not be declared ‘typedef’.

function does not return string type

The format_arg attribute may only be used with a function which return value is a string
type.

function ‘identifier’ is initialized like a variable

It is not legal to initialize a function like a variable.

function return type cannot be function

The return type of a function cannot be a function.
 2012-2018 Microchip Technology Inc. DS50002071G-page 291

MPLAB® XC16 C Compiler User’s Guide
G

global register variable follows a function definition

Global register variables should precede function definitions.

global register variable has initial value

Do not specify an initial value for a global register variable.

global register variable ‘identifier’ used in nested function

Do not use a global register variable in a nested function.

H

‘identifier’ has an incomplete type

It is not legal to have an incomplete type for the specified ‘identifier’.

‘identifier’ has both ‘extern’ and initializer

A variable declared ‘extern’ cannot be initialized.

hexadecimal floating constants require an exponent

Hexadecimal floating constants must have exponents.

I

implicit declaration of function ‘identifier’

The function identifier is used without a preceding prototype declaration or function
definition.

impossible register constraint in ‘asm’

The asm statement is invalid.

incompatible type for argument n of ‘identifier’

When calling functions in C, ensure that actual argument types match the formal
parameter types.

incompatible type for argument n of indirect function call

When calling functions in C, ensure that actual argument types match the formal
parameter types.

incompatible types in operation

The types used in operation must be compatible.

incomplete ‘name’ option

The option to the command-line parameter name is incomplete.

inconsistent operand constraints in an ‘asm’

The asm statement is invalid.

increment of pointer to unknown structure

Do not increment a pointer to an unknown structure.

initializer element is not computable at load time

Initializer elements must be computable at load time.

initializer element is not constant

Initializer elements must be constant.

initializer fails to determine size of ‘identifier’

An array initializer fails to determine its size.
DS50002071G-page 292 2012-2018 Microchip Technology Inc.

Diagnostics
initializer for static variable is not constant

Static variable initializers must be constant.

initializer for static variable uses complicated arithmetic

Static variable initializers should not use complicated arithmetic.

input operand constraint contains ‘constraint’

The specified constraint is not valid for an input operand.

int-array initialized from non-wide string

Int-arrays should not be initialized from non-wide strings.

interrupt functions must not take parameters

An interrupt function cannot receive parameters. void must be used to state explicitly
that the argument list is empty.

interrupt functions must return void

An interrupt function must have a return type of void. No other return type is allowed.

interrupt modifier ‘name’ unknown

The compiler was expecting ‘irq’, ‘altirq’ or ‘save’ as an interrupt attribute modifier.

interrupt modifier syntax error

There is a syntax error with the interrupt attribute modifier.

interrupt pragma must have file scope

#pragma interrupt must be at file scope.

interrupt save modifier syntax error

There is a syntax error with the ‘save’ modifier of the interrupt attribute.

interrupt vector is not a constant

The interrupt vector number must be an integer constant.

interrupt vector number n is not valid

A valid interrupt vector number is required.

invalid #ident directive

#ident should be followed by a quoted string literal.

invalid arg to ‘__builtin_frame_address’

The argument should be the level of the caller of the function (where 0 yields the frame
address of the current function, 1 yields the frame address of the caller of the current
function, and so on) and is an integer literal.

invalid arg to ‘__builtin_return_address’

The level argument must be an integer literal.

invalid argument for ‘name’

The compiler was expecting ‘data’ or ‘prog’ as the space attribute parameter.

invalid character ‘character’ in #if

This message appears when an unprintable character, such as a control character,
appears after #if.

invalid initial value for member ‘name’

Bit-field ‘name’ can only be initialized by an integer.

invalid initializer

Do not use invalid initializers.
 2012-2018 Microchip Technology Inc. DS50002071G-page 293

MPLAB® XC16 C Compiler User’s Guide
Invalid location qualifier: ‘symbol’

Expecting ‘sfr’ or ‘gpr’, which are ignored on dsPIC DSC devices, as location qualifiers.

invalid operands to binary ‘operator’

The operands to the specified binary operator are invalid.

Invalid option ‘option’

The specified command-line option is invalid.

Invalid option ‘symbol’ to interrupt pragma

Expecting shadow and/or save as options to interrupt pragma.

Invalid option to interrupt pragma

Garbage at the end of the pragma.

Invalid or missing function name from interrupt pragma

The interrupt pragma requires the name of the function being called.

Invalid or missing section name

The section name must start with a letter or underscore (‘_’) and be followed by a
sequence of letters, underscores and/or numbers. The names ‘access ’, ‘shared ’ and
‘overlay’ have special meaning.

invalid preprocessing directive #‘directive’

Not a valid preprocessing directive. Check the spelling.

invalid preprologue argument

The preprologue option is expecting an assembly statement or statements for its
argument enclosed in double quotes.

invalid register name for ‘name’

File scope variable ‘name’ declared as a register variable with an illegal register name.

invalid register name ‘name’ for register variable

The specified name is not the name of a register.

invalid save variable in interrupt pragma

Expecting a symbol or symbols to save.

invalid storage class for function ‘identifier’

Functions may not have the ‘register’ storage class.

invalid suffix ‘suffix’ on integer constant

Integer constants may be suffixed by the letters ‘u’, ‘U’, ‘l’ and ‘L’ only.

invalid suffix on floating constant

A floating constant suffix may be ‘f’, ‘F’, ‘l’ or ‘L’ only. If there are two ‘L’s, they must be
adjacent and the same case.

invalid type argument of ‘operator’

The type of the argument to operator is invalid.

invalid type modifier within pointer declarator

Only const or volatile may be used as type modifiers within a pointer declarator.

invalid use of array with unspecified bounds

Arrays with unspecified bounds must be used in valid ways.

invalid use of incomplete typedef ‘typedef’

The specified typedef is being used in an invalid way; this is not allowed.
DS50002071G-page 294 2012-2018 Microchip Technology Inc.

Diagnostics
invalid use of undefined type ‘type identifier’

The specified type is being used in an invalid way; this is not allowed.

invalid use of void expression

Void expressions must not be used.

“name” is not a valid filename

#line requires a valid file name.

‘filename’ is too large

The specified file is too large to process the file. Its probably larger than 4 GB, and the
preprocessor refuses to deal with such large files. It is required that files be less than
4 GB in size.

ISO C forbids data definition with no type or storage class

A type specifier or storage class specifier is required for a data definition in ISO C.

ISO C requires a named argument before ‘...’

ISO C requires a named argument before ‘...’.

L

label label referenced outside of any function

Labels may only be referenced inside functions.

label ‘label’ used but not defined

The specified label is used but is not defined.

language ‘name’ not recognized

Permissible languages include: c assembler none.

filename: linker input file unused because linking not done

The specified filename was specified on the command line, and it was taken to be a
linker input file (since it was not recognized as anything else). However, the link step
was not run. Therefore, this file was ignored.

long long long is too long for GCC

The compiler supports integers no longer than long long.

long or short specified with char for ‘identifier’

The long and short qualifiers cannot be used with the char type.

long or short specified with floating type for ‘identifier’

The long and short qualifiers cannot be used with the float type.

long, short, signed or unsigned invalid for ‘identifier’

The long, short and signed qualifiers may only be used with integral types.

M

macro names must be identifiers

Macro names must start with a letter or underscore followed by more letters, numbers
or underscores.

macro parameters must be comma-separated

Commas are required between parameters in a list of parameters.

macro ‘name’ passed x arguments, but takes just y

Too many arguments were passed to macro ‘name’.
 2012-2018 Microchip Technology Inc. DS50002071G-page 295

MPLAB® XC16 C Compiler User’s Guide
macro ‘name’ requires y arguments, but only z given

Not enough arguments were passed to macro ‘name’.

matching constraint not valid in output operand

The asm statement is invalid.

‘symbol’ may not appear in macro parameter list

 ‘symbol’ is not allowed as a parameter.

Missing ‘=’ for ‘save’ in interrupt pragma

The save parameter requires an equal sign before the variable(s) are listed. For
example, #pragma interrupt isr0 save=var1,var2

missing ‘(’after predicate

#assert or #unassert expects parentheses around the answer. For example:
#assert PREDICATE (ANSWER)

missing ‘(’ in expression

Parentheses are not matching, expecting an opening parenthesis.

missing ‘)’ after “defined”

Expecting a closing parenthesis.

missing ‘)’ in expression

Parentheses are not matching, expecting a closing parenthesis.

missing ‘)’ in macro parameter list

The macro is expecting parameters to be within parentheses and separated by
commas.

missing ‘)’ to complete answer

#assert or #unassert expects parentheses around the answer.

missing argument to ‘option’ option

The specified command-line option requires an argument.

missing binary operator before token ‘token’

Expecting an operator before the ‘token’.

missing terminating ‘character’ character

Missing terminating character such as a single quote ‘, double quote ” or right angle
bracket >.

missing terminating > character

Expecting terminating > in #include directive.

more than n operands in ‘asm’

The asm statement is invalid.

multiple default labels in one switch

Only a single default label may be specified for each switch.

multiple parameters named ‘identifier’

Parameter names must be unique.

multiple storage classes in declaration of ‘identifier’

Each declaration should have a single storage class.
DS50002071G-page 296 2012-2018 Microchip Technology Inc.

Diagnostics
N

negative width in bit-field ‘identifier’

Bit-field widths may not be negative.

nested function ‘name’ declared ‘extern’

A nested function cannot be declared ‘extern’.

nested redefinition of ‘identifier’

Nested redefinitions are illegal.

no data type for mode ‘mode’

The argument mode specified for the mode attribute is a recognized GCC machine
mode, but it is not one that is implemented in the compiler.

no include path in which to find ‘name’

Cannot find include file ‘name’.

no macro name given in #‘directive’ directive

A macro name must follow the #define, #undef, #ifdef or #ifndef directives.

nonconstant array index in initializer

Only constant array indices may be used in initializers.

non-prototype definition here

If a function prototype follows a definition without a prototype and the number of
arguments is inconsistent between the two, this message identifies the line number of
the non-prototype definition.

number of arguments doesn’t match prototype

The number of function arguments must match the function’s prototype.

O

operand constraint contains incorrectly positioned ‘+’ or ‘=’

The asm statement is invalid.

operand constraints for ‘asm’ differ in number of alternatives

The asm statement is invalid.

operator “defined” requires an identifier

“defined” is expecting an identifier.

operator ‘symbol’ has no right operand

Preprocessor operator ‘symbol’ requires an operand on the right side.

output number n not directly addressable

The asm statement is invalid.

output operand constraint lacks ‘=’

The asm statement is invalid.

output operand is constant in ‘asm’

The asm statement is invalid.

overflow in enumeration values

Enumeration values must be in the range of ‘int’.
 2012-2018 Microchip Technology Inc. DS50002071G-page 297

MPLAB® XC16 C Compiler User’s Guide
P

parameter ‘identifier’ declared void

Parameters may not be declared void.

parameter ‘identifier’ has incomplete type

Parameters must have complete types.

parameter ‘identifier’ has just a forward declaration

Parameters must have complete types; forward declarations are insufficient.

parameter ‘identifier’ is initialized

It is not legal to initialize parameters.

parameter name missing

The macro was expecting a parameter name. Check for two commas without a name
between.

parameter name missing from parameter list

Parameter names must be included in the parameter list.

parameter name omitted

Parameter names may not be omitted.

param types given both in param list and separately

Parameter types should be given either in the parameter list or separately, but not both.

parse error

The source line cannot be parsed; it contains errors.

pointer value used where a complex value was expected

Do not use pointer values where complex values are expected.

pointer value used where a floating point value was expected

Do not use pointer values where floating-point values are expected.

pointers are not permitted as case values

A case value must be an integer-valued constant or constant expression.

predicate must be an identifier

#assert or #unassert require a single identifier as the predicate.

predicate’s answer is empty

The #assert or #unassert has a predicate and parentheses but no answer inside the
parentheses, which is required.

previous declaration of ‘identifier’

This message identifies the location of a previous declaration of identifier that conflicts
with the current declaration.

identifier previously declared here

This message identifies the location of a previous declaration of identifier that conflicts
with the current declaration.

identifier previously defined here

This message identifies the location of a previous definition of identifier that conflicts
with the current definition.

prototype declaration

Identifies the line number where a function prototype is declared. Used in conjunction
with other error messages.
DS50002071G-page 298 2012-2018 Microchip Technology Inc.

Diagnostics
R

redeclaration of ‘identifier’

The identifier is multiply declared.

redeclaration of ‘enum identifier’

Enums may not be redeclared.

‘identifier’ redeclared as different kind of symbol

Multiple, inconsistent declarations exist for identifier.

redefinition of ‘identifier’

The identifier is multiply defined.

redefinition of ‘struct identifier’

Structs may not be redefined.

redefinition of ‘union identifier’

Unions may not be redefined.

register name given for non-register variable ‘name’

Attempt to map a register to a variable which is not marked as register.

register name not specified for ‘name’

File scope variable ‘name’ declared as a register variable without providing a register.

register specified for ‘name’ isn’t suitable for data type

Alignment or other restrictions prevent using requested register.

request for member ‘identifier’ in something not a structure or union

Only structure or unions have members. It is not legal to reference a member of
anything else, since nothing else has members.

requested alignment is not a constant

The argument to the aligned attribute must be a compile-time constant.

requested alignment is not a power of 2

The argument to the aligned attribute must be a power of two.

requested alignment is too large

The alignment size requested is larger than the linker allows. The size must be 4096
or less and a power of 2.

return type is an incomplete type

Return types must be complete.

S

save variable ‘name’ index not constant

The subscript of the array ‘name’ is not a constant integer.

save variable ‘name’ is not word aligned

The object being saved must be word aligned

save variable ‘name’ size is not even

The object being saved must be evenly sized.

save variable ‘name’ size is not known

The object being saved must have a known size.
 2012-2018 Microchip Technology Inc. DS50002071G-page 299

MPLAB® XC16 C Compiler User’s Guide
section attribute cannot be specified for local variables

Local variables are always allocated in registers or on the stack. It is therefore not legal
to attempt to place local variables in a named section.

section attribute not allowed for identifier

The section attribute may only be used with a function or variable.

section of identifier conflicts with previous declaration

If multiple declarations of the same identifier specify the section attribute, then the
value of the attribute must be consistent.

sfr address ‘address’ is not valid

The address must be less than 0x2000 to be valid.

sfr address is not a constant

The sfr address must be a constant.

‘size of’ applied to a bit-field

‘sizeof’ must not be applied to a bit-field.

size of array ‘identifier’ has non-integer type

Array size specifiers must be of integer type.

size of array ‘identifier’ is negative

Array sizes may not be negative.

size of array ‘identifier’ is too large

The specified array is too large.

size of variable ‘variable’ is too large

The maximum size of the variable can be 32768 bytes.

storage class specified for parameter ‘identifier’

A storage class may not be specified for a parameter.

storage size of ‘identifier’ isn’t constant

Storage size must be compile-time constants.

storage size of ‘identifier’ isn’t known

The size of identifier is incompletely specified.

stray ‘character’ in program

Do not place stray ‘character’ characters in the source program.

strftime formats cannot format arguments

While using the attribute format when the archetype parameter is strftime, the third
parameter to the attribute, which specifies the first parameter to match against the
format string, should be 0. strftime style functions do not have input values to match
against a format string.

structure has no member named ‘identifier’

A structure member named ‘identifier ’ is referenced; but the referenced structure
contains no such member. This is not allowed.

subscripted value is neither array nor pointer

Only arrays or pointers may be subscripted.

switch quantity not an integer

Switch quantities must be integers.
DS50002071G-page 300 2012-2018 Microchip Technology Inc.

Diagnostics
symbol ‘symbol’ not defined

The symbol ‘symbol’ needs to be declared before it may be used in the pragma.

syntax error

A syntax error exists on the specified line.

syntax error ‘:’ without preceding ‘?’

A ‘:’ must be preceded by ‘?’ in the ‘?:’ operator.

T

the only valid combination is ‘long double’

The long qualifier is the only qualifier that may be used with the double type.

this built-in requires a frame pointer

__builtin_return_address requires a frame pointer. Do not use the
-fomit-frame-pointer option.

this is a previous declaration

If a label is duplicated, this message identifies the line number of a preceding
declaration.

too few arguments to function

When calling a function in C, do not specify fewer arguments than the function requires.
Nor should you specify too many.

too few arguments to function ‘identifier’

When calling a function in C, do not specify fewer arguments than the function requires.
Nor should you specify too many.

too many alternatives in ‘asm’

The asm statement is invalid.

too many arguments to function

When calling a function in C, do not specify more arguments than the function requires.
Nor should you specify too few.

too many arguments to function ‘identifier’

When calling a function in C, do not specify more arguments than the function requires.
Nor should you specify too few.

too many decimal points in number

Expecting only one decimal point.

top-level declaration of ‘identifier’ specifies ‘auto’

Auto variables can only be declared inside functions.

two or more data types in declaration of ‘identifier’

Each identifier may have only a single data type.

two types specified in one empty declaration

No more that one type should be specified.

type of formal parameter n is incomplete

Specify a complete type for the indicated parameter.

type mismatch in conditional expression

Types in conditional expressions must not be mismatched.

typedef ‘identifier’ is initialized

It is not legal to initialize typedef’s. Use __typeof__ instead.
 2012-2018 Microchip Technology Inc. DS50002071G-page 301

MPLAB® XC16 C Compiler User’s Guide
U

‘identifier’ undeclared (first use in this function)

The specified identifier must be declared.

‘identifier’ undeclared here (not in a function)

The specified identifier must be declared.

union has no member named ‘identifier’

A union member named ‘identifier’ is referenced, but the referenced union contains no
such member. This is not allowed.

unknown field ‘identifier’ specified in initializer

Do not use unknown fields in initializers.

unknown machine mode ‘mode’

The argument mode specified for the mode attribute is not a recognized machine
mode.

unknown register name ‘name’ in ‘asm’

The asm statement is invalid.

unrecognized format specifier

The argument to the format attribute is invalid.

unrecognized option ‘-option’

The specified command-line option is not recognized.

unrecognized option ‘option’

‘option’ is not a known option.

‘identifier’ used prior to declaration

The identifier is used prior to its declaration.

unterminated #‘name’

#endif is expected to terminate a #if, #ifdef or #ifndef conditional.

unterminated argument list invoking macro ‘name’

Evaluation of a function macro has encountered the end of file before completing the
macro expansion.

unterminated comment

The end of file was reached while scanning for a comment terminator.

V

‘va_start’ used in function with fixed args

‘va_start’ should be used only in functions with variable argument lists.

variable ‘identifier’ has initializer but incomplete type

It is not legal to initialize variables with incomplete types.

variable or field ‘identifier’ declared void

Neither variables nor fields may be declared void.

variable-sized object may not be initialized

It is not legal to initialize a variable-sized object.

virtual memory exhausted

Not enough memory left to write error message.
DS50002071G-page 302 2012-2018 Microchip Technology Inc.

Diagnostics
void expression between ‘(‘ and ’)’

Expecting a constant expression but found a void expression between the
parentheses.

‘void’ in parameter list must be the entire list

If ‘void’ appears as a parameter in a parameter list, then there must be no other
parameters.

void value not ignored as it ought to be

The value of a void function should not be used in an expression.

W

warning: -pipe ignored because -save-temps specified

The -pipe option cannot be used with the -save-temps option.

warning: -pipe ignored because -time specified

The -pipe option cannot be used with the -time option.

warning: ‘-x spec’ after last input file has no effect

The ‘-x’ command line option affects only those files named after its on the command
line; if there are no such files, then this option has no effect.

weak declaration of ‘name’ must be public

Weak symbols must be externally visible.

weak declaration of ‘name’ must precede definition

‘name’ was defined and then declared weak.

wrong number of arguments specified for attribute attribute

There are too few or too many arguments given for the attribute named ‘attribute’.

wrong type argument to bit-complement

Do not use the wrong type of argument to this operator.

wrong type argument to decrement

Do not use the wrong type of argument to this operator.

wrong type argument to increment

Do not use the wrong type of argument to this operator.

wrong type argument to unary exclamation mark

Do not use the wrong type of argument to this operator.

wrong type argument to unary minus

Do not use the wrong type of argument to this operator.

wrong type argument to unary plus

Do not use the wrong type of argument to this operator.

Z

zero width for bit-field ‘identifier’

Bit-fields may not have zero width.
 2012-2018 Microchip Technology Inc. DS50002071G-page 303

MPLAB® XC16 C Compiler User’s Guide
C.3 WARNINGS

Symbols

‘/*’ within comment

A comment mark was found within a comment.

‘$’ character(s) in identifier or number

Dollar signs in identifier names are an extension to the standard.

#‘directive’ is a GCC extension

#warning, #include_next, #ident, #import, #assert and #unassert directives are GCC
extensions and are not of ISO C89.

#import is obsolete, use an #ifndef wrapper in the header file

The #import directive is obsolete. #import was used to include a file if it hadn’t already
been included. Use the #ifndef directive instead.

#include_next in primary source file

#include_next starts searching the list of header file directories after the directory in
which the current file was found. In this case, there were no previous header files so it
is starting in the primary source file.

#pragma pack (pop) encountered without matching #pragma pack (push, <n>)

The pack(pop) pragma must be paired with a pack(push) pragma, which must precede
it in the source file.

#pragma pack (pop, identifier) encountered without matching #pragma pack
(push, identifier, <n>)

The pack(pop) pragma must be paired with a pack(push) pragma, which must precede
it in the source file.

#warning: message

The directive #warning causes the preprocessor to issue a warning and continue
preprocessing. The tokens following #warning are used as the warning message.

A

absolute address specification ignored

Ignoring the absolute address specification for the code section in the #pragma
statement because it is not supported in the compiler. Addresses must be specified in
the linker script and code sections can be defined with the keyword __attribute__.

address of register variable ‘name’ requested

The register specifier prevents taking the address of a variable.

alignment must be a small power of two, not n

The alignment parameter of the pack pragma must be a small power of two.

anonymous enum declared inside parameter list

An anonymous enum is declared inside a function parameter list. It is usually better
programming practice to declare enums outside parameter lists, since they can never
become complete types when defined inside parameter lists.

anonymous struct declared inside parameter list

An anonymous struct is declared inside a function parameter list. It is usually better
programming practice to declare structs outside parameter lists, since they can never
become complete types when defined inside parameter lists.
DS50002071G-page 304 2012-2018 Microchip Technology Inc.

Diagnostics
anonymous union declared inside parameter list

An anonymous union is declared inside a function parameter list. It is usually better
programming practice to declare unions outside parameter lists, since they can never
become complete types when defined inside parameter lists.

anonymous variadic macros were introduced in C99

Macros which accept a variable number of arguments is a C99 feature.

argument ‘identifier’ might be clobbered by ‘longjmp’ or ‘vfork’

An argument might be changed by a call to longjmp. These warnings are possible only
in optimizing compilation.

array ‘identifier’ assumed to have one element

The length of the specified array was not explicitly stated. In the absence of information
to the contrary, the compiler assumes that it has one element.

array subscript has type ‘char’

An array subscript has type ‘char’.

array type has incomplete element type

Array types should not have incomplete element types.

asm operand n probably doesn’t match constraints

The specified extended asm operand probably doesn’t match its constraints.

assignment of read-only member ‘name’

The member ‘name’ was declared as const and cannot be modified by assignment.

assignment of read-only variable ‘name’

‘name’ was declared as const and cannot be modified by assignment.

‘identifier’ attribute directive ignored

The named attribute is not a known or supported attribute, and is therefore ignored.

‘identifier’ attribute does not apply to types

The named attribute may not be used with types. It is ignored.

‘identifier’ attribute ignored

The named attribute is not meaningful in the given context, and is therefore ignored.

‘attribute’ attribute only applies to function types

The specified attribute can only be applied to the return types of functions and not to
other declarations.

B

backslash and newline separated by space

While processing for escape sequences, a backslash and newline were found
separated by a space.

backslash-newline at end of file

While processing for escape sequences, a backslash and newline were found at the
end of the file.

bit-field ‘identifier’ type invalid in ISO C

The type used on the specified identifier is not valid in ISO C.

braces around scalar initializer

A redundant set of braces around an initializer is supplied.
 2012-2018 Microchip Technology Inc. DS50002071G-page 305

MPLAB® XC16 C Compiler User’s Guide
built-in function ‘identifier’ declared as non-function

The specified function has the same name as a built-in function, yet is declared as
something other than a function.

C

C++ style comments are not allowed in ISO C89

Use C style comments ‘/*’ and ‘*/’ instead of C++ style comments ‘//’.

call-clobbered register used for global register variable

Choose a register that is normally saved and restored by function calls (W8-W13), so
that library routines will not clobber it.

cannot inline function ‘main’

The function ‘main’ is declared with the inline attribute. This is not supported, since
main must be called from the C start-up code, which is compiled separately.

can’t inline call to ‘identifier’ called from here

The compiler was unable to inline the call to the specified function.

case value ‘n’ not in enumerated type

The controlling expression of a switch statement is an enumeration type, yet a case
expression has the value n, which does not correspond to any of the enumeration
values.

case value ‘value’ not in enumerated type ‘name’

‘value’ is an extra switch case that is not an element of the enumerated type ‘name’.

cast does not match function type

The return type of a function is cast to a type that does not match the function’s type.

cast from pointer to integer of different size

A pointer is cast to an integer that is not 16 bits wide.

cast increases required alignment of target type

When compiling with the -Wcast-align command-line option, the compiler verifies
that casts do not increase the required alignment of the target type. For example, this
warning message will be given if a pointer to char is cast as a pointer to int, since the
aligned for char (byte alignment) is less than the alignment requirement for int (word
alignment).

character constant too long

Character constants must not be too long.

comma at end of enumerator list

Unnecessary comma at the end of the enumerator list.

comma operator in operand of #if

Not expecting a comma operator in the #if directive.

comparing floating point with == or != is unsafe

Floating-point values can be approximations to infinitely precise real numbers. Instead
of testing for equality, use relational operators to see whether the two values have
ranges that overlap.

comparison between pointer and integer

A pointer type is being compared to an integer type.
DS50002071G-page 306 2012-2018 Microchip Technology Inc.

Diagnostics
comparison between signed and unsigned

One of the operands of a comparison is signed, while the other is unsigned. The signed
operand will be treated as an unsigned value, which may not be correct.

comparison is always n

A comparison involves only constant expressions, so the compiler can evaluate the run
time result of the comparison. The result is always n.

comparison is always n due to width of bit-field

A comparison involving a bit-field always evaluates to n because of the width of the
bit-field.

comparison is always false due to limited range of data type

A comparison will always evaluate to false at run time, due to the range of the data
types.

comparison is always true due to limited range of data type

A comparison will always evaluate to true at run time, due to the range of the data
types.

comparison of promoted ~unsigned with constant

One of the operands of a comparison is a promoted ~unsigned, while the other is a
constant.

comparison of promoted ~unsigned with unsigned

One of the operands of a comparison is a promoted ~unsigned, while the other is
unsigned.

comparison of unsigned expression >= 0 is always true

A comparison expression compares an unsigned value with zero. Since unsigned
values cannot be less than zero, the comparison will always evaluate to true at run
time.

comparison of unsigned expression < 0 is always false

A comparison expression compares an unsigned value with zero. Since unsigned
values cannot be less than zero, the comparison will always evaluate to false at run
time.

comparisons like X<=Y<=Z do not have their mathematical meaning

A C expression does not necessarily mean the same thing as the corresponding
mathematical expression. In particular, the C expression X<=Y<=Z is not equivalent to
the mathematical expression X Y Z.

conflicting types for built-in function ‘identifier’

The specified function has the same name as a built-in function but is declared with
conflicting types.

const declaration for ‘identifier’ follows non-const

The specified identifier was declared const after it was previously declared as
non-const.

control reaches end of non-void function

All exit paths from non-void function should return an appropriate value. The compiler
detected a case where a non-void function terminates, without an explicit return value.
Therefore, the return value might be unpredictable.

conversion lacks type at end of format

When checking the argument list of a call to printf, scanf, etc., the compiler found that
a format field in the format string lacked a type specifier.
 2012-2018 Microchip Technology Inc. DS50002071G-page 307

MPLAB® XC16 C Compiler User’s Guide
concatenation of string literals with __FUNCTION__ is deprecated

__FUNCTION__ will be handled the same way as __func__ (which is defined by the
ISO standard C99). __func__ is a variable, not a string literal, so it does not catenate
with other string literals.

conflicting types for ‘identifier’

The specified identifier has multiple, inconsistent declarations.

D

data definition has no type or storage class

A data definition was detected that lacked a type and storage class.

data qualifier ‘qualifier’ ignored

Data qualifiers, which include ‘access’, ‘shared’ and ‘overlay’, are not used in the com-
piler, but are there for compatibility with the MPLAB C Compiler for PIC18 MCUs.

declaration of ‘identifier’ has ‘extern’ and is initialized

Externs should not be initialized.

declaration of ‘identifier’ shadows a parameter

The specified identifier declaration shadows a parameter, making the parameter
inaccessible.

declaration of ‘identifier’ shadows a symbol from the parameter list

The specified identifier declaration shadows a symbol from the parameter list, making
the symbol inaccessible.

declaration of ‘identifier’ shadows global declaration

The specified identifier declaration shadows a global declaration, making the global
inaccessible.

‘identifier’ declared inline after being called

The specified function was declared inline after it was called.

‘identifier’ declared inline after its definition

The specified function was declared inline after it was defined.

‘identifier’ declared ‘static’ but never defined

The specified function was declared static, but was never defined.

decrement of read-only member ‘name’

The member ‘name’ was declared as const and cannot be modified by decrementing.

decrement of read-only variable ‘name’

‘name’ was declared as const and cannot be modified by decrementing.

‘identifier’ defined but not used

The specified function was defined, but was never used.

deprecated use of label at end of compound statement

A label should not be at the end of a statement. It should be followed by a statement.

dereferencing ‘void *’ pointer

It is not correct to dereference a ‘void *’ pointer. Cast it to a pointer of the appropriate
type before dereferencing the pointer.

division by zero

Compile-time division by zero has been detected.
DS50002071G-page 308 2012-2018 Microchip Technology Inc.

Diagnostics
duplicate ‘const’

The ‘const’ qualifier should be applied to a declaration only once.

duplicate ‘restrict’

The ‘restrict’ qualifier should be applied to a declaration only once.

duplicate ‘volatile’

The ‘volatile’ qualifier should be applied to a declaration only once.

E

embedded ‘\0’ in format

When checking the argument list of a call to printf, scanf, etc., the compiler found that
the format string contains an embedded ‘\0’ (zero), which can cause early termination
of format string processing.

empty body in an else-statement

An else statement is empty.

empty body in an if-statement

An if statement is empty.

empty declaration

The declaration contains no names to declare.

empty range specified

The range of values in a case range is empty, that is, the value of the low expression
is greater than the value of the high expression. Recall that the syntax for case ranges
is case low ... high:.

‘enum identifier’ declared inside parameter list

The specified enum is declared inside a function parameter list. It is usually better
programming practice to declare enums outside parameter lists, since they can never
become complete types when defined inside parameter lists.

enum defined inside parms

An enum is defined inside a function parameter list.

enumeration value ‘identifier’ not handled in switch

The controlling expression of a switch statement is an enumeration type, yet not all
enumeration values have case expressions.

enumeration values exceed range of largest integer

Enumeration values are represented as integers. The compiler detected that an
enumeration range cannot be represented in any of the compiler integer formats,
including the largest such format.

excess elements in array initializer

There are more elements in the initializer list than the array was declared with.

excess elements in scalar initializer");

There should be only one initializer for a scalar variable.

excess elements in struct initializer

There are more elements in the initializer list than the structure was declared with.

excess elements in union initializer

There are more elements in the initializer list than the union was declared with.
 2012-2018 Microchip Technology Inc. DS50002071G-page 309

MPLAB® XC16 C Compiler User’s Guide
extra semicolon in struct or union specified

The structure type or union type contains an extra semicolon.

extra tokens at end of #‘directive’ directive

The compiler detected extra text on the source line containing the #‘directive’ directive.

F

-ffunction-sections may affect debugging on some targets

You may have problems with debugging if you specify both the -g option and the
-ffunction-sections option.

first argument of ‘identifier’ should be ‘int’

Expecting declaration of first argument of specified identifier to be of type int.

floating constant exceeds range of ‘double’

A floating-point constant is too large or too small (in magnitude) to be represented as
a ‘double’.

floating constant exceeds range of ‘float’

A floating-point constant is too large or too small (in magnitude) to be represented as
a ‘float’.

floating constant exceeds range of ‘long double’

A floating-point constant is too large or too small (in magnitude) to be represented as
a ‘long double’.

floating point overflow in expression

When folding a floating-point constant expression, the compiler found that the
expression overflowed, that is, it could not be represented as float.

‘type1’ format, ‘type2’ arg (arg ‘num’)

The format is of type ‘type1’, but the argument being passed is of type ‘type2’.
The argument in question is the ‘num’ argument.

format argument is not a pointer (arg n)

When checking the argument list of a call to printf, scanf, etc., the compiler found that
the specified argument number n was not a pointer, san the format specifier indicated
it should be.

format argument is not a pointer to a pointer (arg n)

When checking the argument list of a call to printf, scanf, etc., the compiler found that
the specified argument number n was not a pointer san the format specifier indicated
it should be.

fprefetch-loop-arrays not supported for this target

The option to generate instructions to prefetch memory is not supported for this target.

function call has aggregate value

The return value of a function is an aggregate.

function declaration isn’t a prototype

When compiling with the -Wstrict-prototypes command-line option, the compiler
ensures that function prototypes are specified for all functions. In this case, a function
definition was encountered without a preceding function prototype.

function declared ‘noreturn’ has a ‘return’ statement

A function was declared with the noreturn attribute-indicating that the function does not
return-yet the function contains a return statement. This is inconsistent.
DS50002071G-page 310 2012-2018 Microchip Technology Inc.

Diagnostics
function might be possible candidate for attribute ‘noreturn’

The compiler detected that the function does not return. If the function had been
declared with the ‘noreturn’ attribute, then the compiler might have been able to
generate better code.

function returns address of local variable

Functions should not return the addresses of local variables, since, when the function
returns, the local variables are de-allocated.

function returns an aggregate

The return value of a function is an aggregate.

function ‘name’ redeclared as inline
previous declaration of function ‘name’ with attribute noinline

Function ‘name’ was declared a second time with the keyword ‘inline’, which now
allows the function to be considered for inlining.

function ‘name’ redeclared with attribute noinline
previous declaration of function ‘name’ was inline

Function ‘name’ was declared a second time with the noinline attribute, which now
causes it to be ineligible for inlining.

function ‘identifier’ was previously declared within a block

The specified function has a previous explicit declaration within a block, yet it has an
implicit declaration on the current line.

G

GCC does not yet properly implement ‘[*]’ array declarators

Variable length arrays are not currently supported by the compiler.

H

hex escape sequence out of range

The hex sequence must be less than 100 in hex (256 in decimal).

I

ignoring asm-specifier for non-static local variable ‘identifier’

The asm-specifier is ignored when it is used with an ordinary, non-register local
variable.

ignoring invalid multibyte character

When parsing a multibyte character, the compiler determined that it was invalid. The
invalid character is ignored.

ignoring option ‘option’ due to invalid debug level specification

A debug option was used with a debug level that is not a valid debug level.

ignoring #pragma identifier

The specified pragma is not supported by the compiler, and is ignored.

imaginary constants are a GCC extention

ISO C does not allow imaginary numeric constants.

implicit declaration of function ‘identifier’

The specified function has no previous explicit declaration (definition or function
prototype), so the compiler makes assumptions about its return type and parameters.
 2012-2018 Microchip Technology Inc. DS50002071G-page 311

MPLAB® XC16 C Compiler User’s Guide
increment of read-only member ‘name’

The member ‘name’ was declared as const and cannot be modified by incrementing.

increment of read-only variable ‘name’

‘name’ was declared as const and cannot be modified by incrementing.

initialization of a flexible array member

A flexible array member is intended to be dynamically allocated not statically.

‘identifier’ initialized and declared ‘extern’

Externs should not be initialized.

initializer element is not constant

Initializer elements should be constant.

inline function ‘name’ given attribute noinline

The function ‘name’ has been declared as inline, but the noinline attribute prevents the
function from being considered for inlining.

inlining failed in call to ‘identifier’ called from here

The compiler was unable to inline the call to the specified function.

integer constant is so large that it is unsigned

An integer constant value appears in the source code without an explicit unsigned
modifier, yet the number cannot be represented as a signed int; therefore, the compiler
automatically treats it as an unsigned int.

integer constant is too large for ‘type’ type

An integer constant should not exceed 2^32 - 1 for an unsigned long int, 2^63 - 1 for a
long long int or 2^64 - 1 for an unsigned long long int.

integer overflow in expression

When folding an integer constant expression, the compiler found that the expression
overflowed; that is, it could not be represented as an int.

invalid application of ‘sizeof’ to a function type

It is not recommended to apply the sizeof operator to a function type.

invalid application of ‘sizeof’ to a void type

The sizeof operator should not be applied to a void type.

invalid digit ‘digit’ in octal constant

All digits must be within the radix being used. For instance, only the digits 0 thru 7 may
be used for the octal radix.

invalid second arg to __builtin_prefetch; using zero

Second argument must be 0 or 1.

invalid storage class for function ‘name’

‘auto’ storage class should not be used on a function defined at the top level. ‘static’
storage class should not be used if the function is not defined at the top level.

invalid third arg to __builtin_prefetch; using zero

Third argument must be 0, 1, 2, or 3.

‘identifier’ is an unrecognized format function type

The specified identifier, used with the format attribute, is not one of the recognized
format function types printf, scanf, or strftime.
DS50002071G-page 312 2012-2018 Microchip Technology Inc.

Diagnostics
‘identifier’ is narrower than values of its type

A bit-field member of a structure has for its type an enumeration, but the width of the
field is insufficient to represent all enumeration values.

‘storage class’ is not at beginning of declaration

The specified storage class is not at the beginning of the declaration. Storage classes
are required to come first in declarations.

ISO C does not allow extra ‘;’ outside of a function

An extra ‘;’ was found outside a function. This is not allowed by ISO C.

ISO C does not support ‘++’ and ‘--’ on complex types

The increment operator and the decrement operator are not supported on complex
types in ISO C.

ISO C does not support ‘~’ for complex conjugation

The bitwise negation operator cannot be use for complex conjugation in ISO C.

ISO C does not support complex integer types

Complex integer types, such as __complex__ short int, are not supported in ISO C.

ISO C does not support plain ‘complex’ meaning ‘double complex’

Using __complex__ without another modifier is equivalent to ‘complex double’ which
is not supported in ISO C.

ISO C does not support the ‘char’ ‘kind of format’ format

ISO C does not support the specification character ‘char’ for the specified ‘kind of
format’.

ISO C doesn’t support unnamed structs/unions

All structures and/or unions must be named in ISO C.

ISO C forbids an empty source file

The file contains no functions or data. This is not allowed in ISO C.

ISO C forbids empty initializer braces

ISO C expects initializer values inside the braces.

ISO C forbids nested functions

A function has been defined inside another function.

ISO C forbids omitting the middle term of a ?: expression

The conditional expression requires the middle term or expression between the ‘?’ and
the ‘:’.

ISO C forbids qualified void function return type

A qualifier may not be used with a void function return type.

ISO C forbids range expressions in switch statements

Specifying a range of consecutive values in a single case label is not allowed in ISO C.

ISO C forbids subscripting ‘register’ array

Subscripting a ‘register’ array is not allowed in ISO C.

ISO C forbids taking the address of a label

Taking the address of a label is not allowed in ISO C.

ISO C forbids zero-size array ‘name’

The array size of ‘name’ must be larger than zero.
 2012-2018 Microchip Technology Inc. DS50002071G-page 313

MPLAB® XC16 C Compiler User’s Guide
ISO C restricts enumerator values to range of ‘int’

The range of enumerator values must not exceed the range of the int type.

ISO C89 forbids compound literals

Compound literals are not valid in ISO C89.

ISO C89 forbids mixed declarations and code

Declarations should be done first before any code is written. It should not be mixed in
with the code.

ISO C90 does not support ‘[*]’ array declarators

Variable length arrays are not supported in ISO C90.

ISO C90 does not support complex types

Complex types, such as __complex__ float x, are not supported in ISO C90.

ISO C90 does not support flexible array members

A flexible array member is a new feature in C99. ISO C90 does not support it.

ISO C90 does not support ‘long long’

The long long type is not supported in ISO C90.

ISO C90 does not support ‘static’ or type qualifiers in parameter array
declarators

When using an array as a parameter to a function, ISO C90 does not allow the array
declarator to use ‘static’ or type qualifiers.

ISO C90 does not support the ‘char’ ‘function’ format

ISO C does not support the specification character ‘char’ for the specified function
format.

ISO C90 does not support the ‘modifier’ ‘function’ length modifier

The specified modifier is not supported as a length modifier for the given function.

ISO C90 forbids variable-size array ‘name’

In ISO C90, the number of elements in the array must be specified by an integer
constant expression.

L

label ‘identifier’ defined but not used

The specified label was defined, but not referenced.

large integer implicitly truncated to unsigned type

An integer constant value appears in the source code without an explicit unsigned
modifier, yet the number cannot be represented as a signed int; therefore, the compiler
automatically treats it as an unsigned int.

left-hand operand of comma expression has no effect

One of the operands of a comparison is a promoted ~unsigned, while the other is
unsigned.

left shift count >= width of type

Shift counts should be less than the number of bits in the type being shifted. Otherwise,
the shift is meaningless, and the result is undefined.

left shift count is negative

Shift counts should be positive. A negative left shift count does not mean shift right;
it is meaningless.
DS50002071G-page 314 2012-2018 Microchip Technology Inc.

Diagnostics
library function ‘identifier’ declared as non-function

The specified function has the same name as a library function, yet is declared as
something other than a function.

line number out of range

The limit for the line number for a #line directive in C89 is 32767 and in C99 is
2147483647.

‘identifier’ locally external but globally static

The specified identifier is locally external but globally static. This is suspect.

location qualifier ‘qualifier’ ignored

Location qualifiers, which include ‘grp’ and ‘sfr’, are not used in the compiler, but are
there for compatibility with MPLAB C Compiler for PIC18 MCUs.

‘long’ switch expression not converted to ‘int’ in ISO C

ISO C does not convert ‘long’ switch expressions to ‘int’.

M

‘main’ is usually a function

The identifier main is usually used for the name of the main entry point of an
application. The compiler detected that it was being used in some other way, for
example, as the name of a variable.

‘operation’ makes integer from pointer without a cast

A pointer has been implicitly converted to an integer.

‘operation’ makes pointer from integer without a cast

An integer has been implicitly converted to a pointer.

malformed ‘#pragma pack-ignored’

The syntax of the pack pragma is incorrect.

malformed ‘#pragma pack(pop[,id])-ignored’

The syntax of the pack pragma is incorrect.

malformed ‘#pragma pack(push[,id],<n>)-ignored’

The syntax of the pack pragma is incorrect.

malformed ‘#pragma weak-ignored’

The syntax of the weak pragma is incorrect.

‘identifier’ might be used uninitialized in this function

The compiler detected a control path though a function which might use the specified
identifier before it has been initialized.

missing braces around initializer

A required set of braces around an initializer is missing.

missing initializer

An initializer is missing.

modification by ‘asm’ of read-only variable ‘identifier’

A const variable is the left-hand-side of an assignment in an ‘asm’ statement.

multi-character character constant

A character constant contains more than one character.
 2012-2018 Microchip Technology Inc. DS50002071G-page 315

MPLAB® XC16 C Compiler User’s Guide
N

negative integer implicitly converted to unsigned type

A negative integer constant value appears in the source code, but the number cannot
be represented as a signed int; therefore, the compiler automatically treats it as an
unsigned int.

nested extern declaration of ‘identifier’

There are nested extern definitions of the specified identifier.

no newline at end of file

The last line of the source file is not terminated with a newline character.

no previous declaration for ‘identifier’

When compiling with the -Wmissing-declarations command-line option, the
compiler ensures that functions are declared before they are defined. In this case, a
function definition was encountered without a preceding function declaration.

no previous prototype for ‘identifier’

When compiling with the -Wmissing-prototypes command-line option, the
compiler ensures that function prototypes are specified for all functions. In this case, a
function definition was encountered without a preceding function prototype.

no semicolon at end of struct or union

A semicolon is missing at the end of the structure or union declaration.

non-ISO-standard escape sequence, ‘seq’

‘seq’ is ‘\e’ or ‘\E’ and is an extension to the ISO standard. The sequence can be used
in a string or character constant and stands for the ASCII character <ESC>.

non-static declaration for ‘identifier’ follows static

The specified identifier was declared non-static after it was previously declared as
static.

‘noreturn’ function does return

A function declared with the noreturn attribute returns. This is inconsistent.

‘noreturn’ function returns non-void value

A function declared with the noreturn attribute returns a non-void value. This is
inconsistent.

null format string

When checking the argument list of a call to printf, scanf, etc., the compiler found that
the format string was missing.

O

octal escape sequence out of range

The octal sequence must be less than 400 in octal (256 in decimal).

output constraint ‘constraint’ for operand n is not at the beginning

Output constraints in extended asm should be at the beginning.

overflow in constant expression

The constant expression has exceeded the range of representable values for its type.

overflow in implicit constant conversion

An implicit constant conversion resulted in a number that cannot be represented as a
signed int; therefore, the compiler automatically treats it as an unsigned int.
DS50002071G-page 316 2012-2018 Microchip Technology Inc.

Diagnostics
P

parameter has incomplete type

A function parameter has an incomplete type.

parameter names (without types) in function declaration

The function declaration lists the names of the parameters but not their types.

parameter points to incomplete type

A function parameter points to an incomplete type.

parameter ‘identifier’ points to incomplete type

The specified function parameter points to an incomplete type.

passing arg ‘number’ of ‘name’ as complex rather than floating due to prototype

The prototype declares argument ‘number’ as a complex, but a float value is used so
the compiler converts to a complex to agree with the prototype.

passing arg ‘number’ of ‘name’ as complex rather than integer due to prototype

The prototype declares argument ‘number’ as a complex, but an integer value is used
so the compiler converts to a complex to agree with the prototype.

passing arg ‘number’ of ‘name’ as floating rather than complex due to prototype

The prototype declares argument ‘number’ as a float, but a complex value is used so
the compiler converts to a float to agree with the prototype.

passing arg ‘number’ of ‘name’ as ‘float’ rather than ‘double’ due to prototype

The prototype declares argument ‘number’ as a float, but a double value is used so the
compiler converts to a float to agree with the prototype.

passing arg ‘number’ of ‘name’ as floating rather than integer due to prototype

The prototype declares argument ‘number’ as a float, but an integer value is used so
the compiler converts to a float to agree with the prototype.

passing arg ‘number’ of ‘name’ as integer rather than complex due to prototype

The prototype declares argument ‘number’ as an integer, but a complex value is used
so the compiler converts to an integer to agree with the prototype.

passing arg ‘number’ of ‘name’ as integer rather than floating due to prototype

The prototype declares argument ‘number’ as an integer, but a float value is used so
the compiler converts to an integer to agree with the prototype.

pointer of type ‘void *’ used in arithmetic

A pointer of type ‘void’ has no size and should not be used in arithmetic.

pointer to a function used in arithmetic

A pointer to a function should not be used in arithmetic.

previous declaration of ‘identifier’

This warning message appears in conjunction with another warning message. The
previous message identifies the location of the suspect code. This message identifies
the first declaration or definition of the identifier.

previous implicit declaration of ‘identifier’

This warning message appears in conjunction with the warning message “type
mismatch with previous implicit declaration”. It locates the implicit declaration of the
identifier that conflicts with the explicit declaration.
 2012-2018 Microchip Technology Inc. DS50002071G-page 317

MPLAB® XC16 C Compiler User’s Guide
R

“name” reasserted

The answer for "name" has been duplicated.

“name” redefined

“name” was previously defined and is being redefined now.

redefinition of ‘identifier’

The specified identifier has multiple, incompatible definitions.

redundant redeclaration of ‘identifier’ in same scope

The specified identifier was re-declared in the same scope. This is redundant.

register used for two global register variables

Two global register variables have been defined to use the same register.

repeated ‘flag’ flag in format

When checking the argument list of a call to strftime, the compiler found that there was
a flag in the format string that is repeated.

When checking the argument list of a call to printf, scanf, etc., the compiler found that
one of the flags { ,+,#,0,-} was repeated in the format string.

return-type defaults to ‘int’

In the absence of an explicit function return-type declaration, the compiler assumes
that the function returns an int.

return type of ‘name’ is not ‘int’

The compiler is expecting the return type of ‘name’ to be ‘int’.

‘return’ with a value, in function returning void

The function was declared as void but returned a value.

‘return’ with no value, in function returning non-void

A function declared to return a non-void value contains a return statement with no
value. This is inconsistent.

right shift count >= width of type

Shift counts should be less than the number of bits in the type being shifted. Otherwise,
the shift is meaningless, and the result is undefined.

right shift count is negative

Shift counts should be positive. A negative right shift count does not mean shift left; it
is meaningless.

S

second argument of ‘identifier’ should be ‘char **’

Expecting second argument of specified identifier to be of type ‘char **’.

second parameter of ‘va_start’ not last named argument

The second parameter of ‘va_start’ must be the last named argument.

shadowing built-in function ‘identifier’

The specified function has the same name as a built-in function, and consequently
shadows the built-in function.

shadowing library function ‘identifier’

The specified function has the same name as a library function, and consequently
shadows the library function.
DS50002071G-page 318 2012-2018 Microchip Technology Inc.

Diagnostics
shift count >= width of type

Shift counts should be less than the number of bits in the type being shifted. Otherwise,
the shift is meaningless, and the result is undefined.

shift count is negative

Shift counts should be positive. A negative left shift count does not mean shift right, nor
does a negative right shift count mean shift left; they are meaningless.

size of ‘name’ is larger than n bytes

Using -Wlarger-than-len will produce the above warning when the size of ‘name’
is larger than the len bytes defined.

size of ‘identifier’ is n bytes

The size of the specified identifier (which is n bytes) is larger than the size specified
with the -Wlarger-than-len command-line option.

size of return value of ‘name’ is larger than n bytes

Using -Wlarger-than-len will produce the above warning when the size of the
return value of ‘name’ is larger than the len bytes defined.

size of return value of ‘identifier’ is n bytes

The size of the return value of the specified function is n bytes, which is larger than the
size specified with the -Wlarger-than-len command-line option.

spurious trailing ‘%’ in format

When checking the argument list of a call to printf, scanf, etc., the compiler found that
there was a spurious trailing ‘%’ character in the format string.

statement with no effect

A statement has no effect.

static declaration for ‘identifier’ follows non-static

The specified identifier was declared static after it was previously declared as
non-static.

string length ‘n’ is greater than the length ‘n’ ISO Cn compilers are required to
support

The maximum string length for ISO C89 is 509. The maximum string length for ISO C99
is 4095.

‘struct identifier’ declared inside parameter list

The specified struct is declared inside a function parameter list. It is usually better
programming practice to declare structs outside parameter lists, since they can never
become complete types when defined inside parameter lists.

struct has no members

The structure is empty, it has no members.

structure defined inside parms

A union is defined inside a function parameter list.

style of line directive is a GCC extension

Use the format ‘#line linenum’ for traditional C.

subscript has type ‘char’

An array subscript has type ‘char’.

suggest explicit braces to avoid ambiguous ‘else’

A nested if statement has an ambiguous else clause. It is recommended that braces be
used to remove the ambiguity.
 2012-2018 Microchip Technology Inc. DS50002071G-page 319

MPLAB® XC16 C Compiler User’s Guide
suggest hiding #directive from traditional C with an indented #

The specified directive is not traditional C and may be ‘hidden’ by indenting the #.
A directive is ignored unless its # is in column 1.

suggest not using #elif in traditional C

#elif should not be used in traditional K&R C.

suggest parentheses around assignment used as truth value

When assignments are used as truth values, they should be surrounded by
parentheses, to make the intention clear to readers of the source program.

suggest parentheses around + or - inside shift
suggest parentheses around && within ||
suggest parentheses around arithmetic in operand of |
suggest parentheses around comparison in operand of |
suggest parentheses around arithmetic in operand of ^
suggest parentheses around comparison in operand of ^
suggest parentheses around + or - in operand of &
suggest parentheses around comparison in operand of &

While operator precedence is well defined in C, sometimes a reader of an expression
might be required to expend a few additional microseconds in comprehending the
evaluation order of operands in an expression if the reader has to rely solely upon the
precedence rules, without the aid of explicit parentheses. A case in point is the use of
the ‘+’ or ‘-’ operator inside a shift. Many readers will be spared unnecessary effort if
parentheses are use to clearly express the intent of the programmer, even though the
intent is unambiguous to the programmer and to the compiler.

T

‘identifier’ takes only zero or two arguments

Expecting zero or two arguments only.

the meaning of ‘\a’ is different in traditional C

When the -wtraditional option is used, the escape sequence ‘\a’ is not recognized
as a meta-sequence: its value is just ‘a’. In non-traditional compilation, ‘\a’ represents
the ASCII BEL character.

the meaning of ‘\x’ is different in traditional C

When the -wtraditional option is used, the escape sequence ‘\x’ is not recognized
as a meta-sequence: its value is just ‘x’. In non-traditional compilation, ‘\x’ introduces
a hexadecimal escape sequence.

third argument of ‘identifier’ should probably be ‘char **’

Expecting third argument of specified identifier to be of type ‘char **’.

this function may return with or without a value

All exit paths from non-void function should return an appropriate value. The compiler
detected a case where a non-void function terminates, sometimes with and sometimes
without an explicit return value. Therefore, the return value might be unpredictable.

this target machine does not have delayed branches

The -fdelayed-branch option is not supported.

too few arguments for format

When checking the argument list of a call to printf, scanf, etc., the compiler found that
the number of actual arguments was fewer than that required by the format string.
DS50002071G-page 320 2012-2018 Microchip Technology Inc.

Diagnostics
too many arguments for format

When checking the argument list of a call to printf, scanf, etc., the compiler found that
the number of actual arguments was more than that required by the format string.

traditional C ignores #‘directive’ with the # indented

Traditionally, a directive is ignored unless its # is in column 1.

traditional C rejects initialization of unions

Unions cannot be initialized in traditional C.

traditional C rejects the ‘ul’ suffix

Suffix ‘u’ is not valid in traditional C.

traditional C rejects the unary plus operator

The unary plus operator is not valid in traditional C.

trigraph ??char converted to char

Trigraphs, which are a three-character sequence, can be used to represent symbols
that may be missing from the keyboard. Trigraph sequences convert as follows:

trigraph ??char ignored

Trigraph sequence is being ignored. char can be (,), <, >, =, /, ', !, or -.

type defaults to ‘int’ in declaration of ‘identifier’

In the absence of an explicit type declaration for the specified identifier, the compiler
assumes that its type is int.

type mismatch with previous external decl
previous external decl of ‘identifier’

The type of the specified identifier does not match the previous declaration.

type mismatch with previous implicit declaration

An explicit declaration conflicts with a previous implicit declaration.

type of ‘identifier’ defaults to ‘int’

In the absence of an explicit type declaration, the compiler assumes that identifier’s
type is int.

type qualifiers ignored on function return type

The type qualifier being used with the function return type is ignored.

U

undefining ‘defined’

‘defined’ cannot be used as a macro name and should not be undefined.

undefining ‘name’

The #undef directive was used on a previously defined macro name ‘name’.

union cannot be made transparent

The transparent_union attribute was applied to a union, but the specified variable
does not satisfy the requirements of that attribute.

‘union identifier’ declared inside parameter list

The specified union is declared inside a function parameter list. It is usually better
programming practice to declare unions outside parameter lists, since they can never
become complete types when defined inside parameter lists.

??(= [??) =] ??< = { ??> = } ??= = # ??/ = \ ??' = ^ ??! = | ??- = ~
 2012-2018 Microchip Technology Inc. DS50002071G-page 321

MPLAB® XC16 C Compiler User’s Guide
union defined inside parms

A union is defined inside a function parameter list.

union has no members

The union is empty, it has no members.

unknown conversion type character ‘character’ in format

When checking the argument list of a call to printf, scanf, etc., the compiler found that
one of the conversion characters in the format string was invalid (unrecognized).

unknown conversion type character 0xnumber in format

When checking the argument list of a call to printf, scanf, etc., the compiler found that
one of the conversion characters in the format string was invalid (unrecognized).

unknown escape sequence ‘sequence’

‘sequence’ is not a valid escape code. An escape code must start with a ‘\’ and use
one of the following characters: n, t, b, r, f, b, \, ', ", a, or ?, or it must be a numeric
sequence in octal or hex. In octal, the numeric sequence must be less than 400 octal.
In hex, the numeric sequence must start with an ‘x’ and be less than 100 hex.

unnamed struct/union that defines no instances

struct/union is empty and has no name.

unreachable code at beginning of identifier

There is unreachable code at beginning of the specified function.

unrecognized gcc debugging option: char

The ‘char’ is not a valid letter for the -dletters debugging option.

unused parameter ‘identifier’

The specified function parameter is not used in the function.

unused variable ‘name’

The specified variable was declared but not used.

use of ‘*’ and ‘flag’ together in format

When checking the argument list of a call to printf, scanf, etc., the compiler found that
both the flags ‘*’ and ‘flag’ appear in the format string.

use of C99 long long integer constants

Integer constants are not allowed to be declared long long in ISO C89.

use of ‘length’ length modifier with ‘type’ type character

When checking the argument list of a call to printf, scanf, etc., the compiler found that
the specified length was incorrectly used with the specified type.

‘name’ used but never defined

The specified function was used but never defined.

‘name’ used with ‘spec’ ‘function’ format

‘name’ is not valid with the conversion specification ‘spec’ in the format of the specified
function.

useless keyword or type name in empty declaration

An empty declaration contains a useless keyword or type name.
DS50002071G-page 322 2012-2018 Microchip Technology Inc.

Diagnostics
V

__VA_ARGS__ can only appear in the expansion of a C99 variadic macro

The predefined macro __VA_ARGS should be used in the substitution part of a macro
definition using ellipses.

value computed is not used

A value computed is not used.

variable ‘name’ declared ‘inline’

The keyword ‘inline’ should be used with functions only.

variable ‘%s’ might be clobbered by ‘longjmp’ or ‘vfork’

A non-volatile automatic variable might be changed by a call to longjmp. These
warnings are possible only in optimizing compilation.

volatile register variables don’t work as you might wish

Passing a variable as an argument could transfer the variable to a different register
(w0-w7) than the one specified (if not w0-w7) for argument transmission. The compiler
may issue an instruction that is not suitable for the specified register and may need to
temporarily move the value to another place. These are only issues if the specified reg-
ister is modified asynchronously (i.e., though an ISR).

W

-Wformat-extra-args ignored without -Wformat

-Wformat must be specified to use -Wformat-extra-args.

-Wformat-nonliteral ignored without -Wformat

-Wformat must be specified to use -Wformat-nonliteral.

-Wformat-security ignored without -Wformat

-Wformat must be specified to use -Wformat-security.

-Wformat-y2k ignored without -Wformat

-Wformat must be specified to use.

-Wid-clash-LEN is no longer supported

The option -Wid-clash-LEN is no longer supported.

-Wmissing-format-attribute ignored without -Wformat

-Wformat must be specified to use -Wmissing-format-attribute.

-Wuninitialized is not supported without -O

Optimization must be on to use the -Wuninitialized option.

‘identifier’ was declared ‘extern’ and later ‘static’

The specified identifier was previously declared ‘extern’ and is now being declared as
static.

‘identifier’ was declared implicitly ‘extern’ and later ‘static’

The specified identifier was previously declared implicitly ‘extern’ and is now being
declared as static.

‘identifier’ was previously implicitly declared to return ‘int’

There is a mismatch against the previous implicit declaration.
 2012-2018 Microchip Technology Inc. DS50002071G-page 323

MPLAB® XC16 C Compiler User’s Guide
‘identifier’ was used with no declaration before its definition

When compiling with the -Wmissing-declarations command-line option, the
compiler ensures that functions are declared before they are defined. In this case, a
function definition was encountered without a preceding function declaration.

‘identifier’ was used with no prototype before its definition

When compiling with the -Wmissing-prototypes command-line option, the
compiler ensures that function prototypes are specified for all functions. In this case, a
function call was encountered without a preceding function prototype for the called
function.

writing into constant object (arg n)

When checking the argument list of a call to printf, scanf, etc., the compiler found that
the specified argument number n was a const object that the format specifier indicated
should be written into.

Z

zero-length identifier format string

When checking the argument list of a call to printf, scanf, etc., the compiler found that
the format string was empty (“”).
DS50002071G-page 324 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER

USER’S GUIDE

Appendix D. GNU Free Documentation License
Version 1.3, 3 November 2008

Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license document,
but changing it is not allowed.

D.1 PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and use-
ful document “free” in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-com-
mercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by
others.

This License is a kind of “copyleft,” which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

D.2 APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this
License. Such a notice grants a world-wide, royalty-free license, unlimited in duration,
to use that work under the conditions stated herein. The “Document” below refers to
any such manual or work. Any member of the public is a licensee and is addressed as
“you.” You accept the license if you copy, modify or distribute the work in a way requir-
ing permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document's overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relation-
ship could be a matter of historical connection with the subject or with related matters,
or of legal, commercial, philosophical, ethical or political position regarding them.
 2012-2018 Microchip Technology Inc. DS50002071G-page 325

MPLAB® XC16 C Compiler User’s Guide
The “Invariant Sections” are certain Secondary Sections whose titles are designated,
as being those of Invariant Sections, in the notice that says that the Document is
released under this License. If a section does not fit the above definition of Secondary
then it is not allowed to be designated as Invariant. The Document may contain zero
Invariant Sections. If the Document does not identify any Invariant Sections then there
are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available draw-
ing editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque.”

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly avail-
able DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include PNG, XCF and
JPG. Opaque formats include proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML, PostScript or PDF pro-
duced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work's title, preceding the
beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to
the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is
precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgments,” “Dedications,” “Endorsements,” or “History.” To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.
DS50002071G-page 326 2012-2018 Microchip Technology Inc.

GNU Free Documentation License
D.3 VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
non-commercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for cop-
ies. If you distribute a large enough number of copies you must also follow the condi-
tions in section 3.

You may also lend copies, under the same conditions stated above and you may pub-
licly display copies.

D.4 COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document's license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of
these copies. The front cover must present the full title with all words of the title equally
prominent and visible. You may add other material on the covers in addition. Copying
with changes limited to the covers, as long as they preserve the title of the Document
and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover and continue the rest
onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which the
general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you
use the latter option, you must take reasonably prudent steps, when you begin distri-
bution of Opaque copies in quantity, to ensure that this Transparent copy will remain
thus accessible at the stated location until at least one year after the last time you dis-
tribute an Opaque copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.
 2012-2018 Microchip Technology Inc. DS50002071G-page 327

MPLAB® XC16 C Compiler User’s Guide
D.5 MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under pre-
cisely this License, with the Modified Version filling the role of the Document, thus
licensing distribution and modification of the Modified Version to whoever possesses a
copy of it. In addition, you must do these things in the Modified Version:

a) Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

b) List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

c) State on the Title page, the name of the publisher of the Modified Version, as the
publisher.

d) Preserve all the copyright notices of the Document.

e) Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

f) Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the
form shown in the Addendum below.

g) Preserve in that license notice the full lists of Invariant Sections and required
Cover Texts given in the Document's license notice.

h) Include an unaltered copy of this License.

i) Preserve the section entitled “History,” as well as its Title, and add an item stating
at least the title, year, new authors, and publisher of the Modified Version as
given on the Title Page. If there is no section entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the Document as given
on its Title Page, then add an item describing the Modified Version as stated in
the previous sentence.

j) Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

k) For any section entitled “Acknowledgments” or “Dedications,” preserve the Title
of the section, and preserve in the section all the substance and tone of each of
the contributor acknowledgments and/or dedications given therein.

l) Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

m) Delete any section entitled “Endorsements.” Such a section may not be included
in the Modified Version.

n) Do not retitle any existing section to be entitled “Endorsements” or to conflict in
title with any Invariant Section. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at
your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version's license notice. These titles
must be distinct from any other section titles.
DS50002071G-page 328 2012-2018 Microchip Technology Inc.

GNU Free Documentation License
You may add a section entitled “Endorsements,” provided it contains nothing but
endorsements of your Modified Version by various parties--for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of
up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but you
may replace the old one, on explicit permission from the previous publisher that added
the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

D.6 COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or pub-
lisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections entitled “History” in the various
original documents, forming one section entitled “History.” Likewise combine any sec-
tions entitled “Acknowledgments” and any sections entitled “Dedications.” You must
delete all sections entitled “Endorsements.”

D.7 COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various doc-
uments with a single copy that is included in the collection, provided that you follow the
rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted docu-
ment, and follow this License in all other respects regarding verbatim copying of that
document.
 2012-2018 Microchip Technology Inc. DS50002071G-page 329

MPLAB® XC16 C Compiler User’s Guide
D.8 AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation's users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works
in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Docu-
ment, then if the Document is less than one half of the entire aggregate, the Docu-
ment's Cover Texts may be placed on covers that bracket the Document within the
aggregate, or the electronic equivalent of covers if the Document is in electronic form.
Otherwise they must appear on printed covers that bracket the whole aggregate.

D.9 TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of
the Document under the terms of section 4. Replacing Invariant Sections with transla-
tions requires special permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License, and all the license
notices in the Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those notices
and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is entitled “Acknowledgments,” “Dedications,” or “History,”
the requirement (section 4) to Preserve its Title (section 1) will typically require chang-
ing the actual title.

D.10 TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense, or dis-
tribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder
explicitly and finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if
the copyright holder notifies you of the violation by some reasonable means, this is the
first time you have received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have
been terminated and not permanently reinstated, receipt of a copy of some or all of the
same material does not give you any rights to use it.
DS50002071G-page 330 2012-2018 Microchip Technology Inc.

GNU Free Documentation License
D.11 FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit to
the present version, but may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version number of this
License, you may choose any version ever published (not as a draft) by the Free Soft-
ware Foundation. If the Document specifies that a proxy can decide which future ver-
sions of this License can be used, that proxy's public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

D.12 RELICENSING

“Massive Multi-author Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for
anybody to edit those works. A public wiki that anybody can edit is an example of such
a server. A “Massive Multi-author Collaboration” (or “MMC”) contained in the site
means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license pub-
lished by Creative Commons Corporation, a not-for-profit corporation with a principal
place of business in San Francisco, California, as well as future copyleft versions of that
license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License and if all works
that were first published under this License somewhere other than this MMC, and sub-
sequently incorporated in whole or in part into the MMC, (1) had no cover texts or
invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under
CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is
eligible for relicensing.
 2012-2018 Microchip Technology Inc. DS50002071G-page 331

MPLAB® XC16 C Compiler User’s Guide
NOTES:
DS50002071G-page 332 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER

USER’S GUIDE

Appendix E. ASCII Character Set
TABLE E-1: ASCII CHARACTER SET

Most Significant Character

Least
 Significant
 Character

Hex 0 1 2 3 4 5 6 7

0 NUL DLE Space 0 @ P ‘ p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 " 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 Bell ETB ’ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL
 2012-2018 Microchip Technology Inc. DS50002071G-page 333

MPLAB® XC16 C Compiler User’s Guide
NOTES:
DS50002071G-page 334 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER

USER’S GUIDE

Appendix F. Deprecated Features
F.1 INTRODUCTION

The features described below are considered to be obsolete and have been replaced
with more advanced functionality. Projects which depend on deprecated features will
work properly with versions of the language tools cited. The use of a deprecated
feature will result in a warning; programmers are encouraged to revise their projects in
order to eliminate any dependency on deprecated features. Support for these features
may be removed entirely in future versions of the language tools.

Deprecated features covered are:

• Predefined Constants

• Variables in Specified Registers

• Changing Non-Auto Variable Allocation

• Configuration Settings Using Macros

F.2 PREDEFINED CONSTANTS

The following preprocessing symbols are defined by the compiler.

The ELF-specific version of the compiler defines the following preprocessing symbols.

The COFF-specific version of the compiler defines the following preprocessing
symbols.

For the most current information, see Section 19.4 “Predefined Macro Names”.

Symbol Defined with -ansi command-line option?

dsPIC30 No

__dsPIC30 Yes

__dsPIC30__ Yes

Symbol Defined with -ansi command-line option?

dsPIC30ELF No

__dsPIC30ELF Yes

__dsPIC30ELF__ Yes

Symbol Defined with -ansi command-line option?

dsPIC30COFF No

__dsPIC30COFF Yes

__dsPIC30COFF__ Yes
 2012-2018 Microchip Technology Inc. DS50002071G-page 335

MPLAB® XC16 C Compiler User’s Guide
F.3 VARIABLES IN SPECIFIED REGISTERS

The compiler allows you to put a few global variables into specified hardware registers.

You can also specify the register in which an ordinary register variable should be
allocated.

• Global register variables reserve registers throughout the program. This may be
useful in programs such as programming language interpreters which have a
couple of global variables that are accessed very often.

• Local register variables in specific registers do not reserve the registers. The
compiler’s data flow analysis is capable of determining where the specified
registers contain live values, and where they are available for other uses. Stores
into local register variables may be deleted when they appear to be unused.
References to local register variables may be deleted, moved or simplified.

These local variables are sometimes convenient for use with the extended inline
assembly (see Chapter 16. “Mixing C and Assembly Code”), if you want to write one
output of the assembler instruction directly into a particular register. (This will work, pro-
vided that the register you specify fits the constraints specified for that operand in the
inline assembly statement).

F.3.1 Defining Global Register Variables

You can define a global register variable like this:

register int *foo asm ("w8");

Here w8 is the name of the register which should be used. Choose a register that is
normally saved and restored by function calls (W8-W13), so that library routines will not
clobber it.

Defining a global register variable in a certain register reserves that register entirely for
this use, at least within the current compilation. The register will not be allocated for any
other purpose in the functions in the current compilation. The register will not be saved
and restored by these functions. Stores into this register are never deleted even if they
would appear to be dead, but references may be deleted, moved or simplified.

It is not safe to access the global register variables from signal handlers, or from more
than one thread of control, because the system library routines may temporarily use the
register for other things (unless you recompile them especially for the task at hand).

It is not safe for one function that uses a global register variable to call another such
function foo by way of a third function lose that was compiled without knowledge of
this variable (i.e., in a source file in which the variable wasn’t declared). This is because
lose might save the register and put some other value there. For example, you can’t
expect a global register variable to be available in the comparison-function that you
pass to qsort, since qsort might have put something else in that register. This
problem can be avoided by recompiling qsort with the same global register variable
definition.

If you want to recompile qsort or other source files that do not actually use your global
register variable, so that they will not use that register for any other purpose, then it
suffices to specify the compiler command-line option -ffixed-reg. You need not
actually add a global register declaration to their source code.

Note: Using too many registers, in particular register W0, may impair the ability of
the 16-bit compiler to compile. It is not recommended that registers be
placed into fixed registers.
DS50002071G-page 336 2012-2018 Microchip Technology Inc.

Deprecated Features
A function that can alter the value of a global register variable cannot safely be called
from a function compiled without this variable, because it could clobber the value the
caller expects to find there on return. Therefore, the function that is the entry point into
the part of the program that uses the global register variable must explicitly save and
restore the value that belongs to its caller.

The library function longjmp will restore each global register variable to the value it
had at the time of the setjmp.

All global register variable declarations must precede all function definitions. If such a
declaration appears after function definitions, the register may be used for other
purposes in the preceding functions.

Global register variables may not have initial values, because an executable file has no
means to supply initial contents for a register.

F.3.2 Specifying Registers for Local Variables

You can define a local register variable with a specified register like this:

register int *foo asm ("w8");

Here w8 is the name of the register that should be used. Note that this is the same
syntax used for defining global register variables, but for a local variable it would appear
within a function.

Defining such a register variable does not reserve the register; it remains available for
other uses in places where flow control determines the variable’s value is not live.
Using this feature may leave the compiler too few available registers to compile certain
functions.

This option does not ensure that the compiler will generate code that has this variable
in the register you specify at all times. You may not code an explicit reference to this
register in an asm statement and assume it will always refer to this variable.

Assignments to local register variables may be deleted when they appear to be
unused. References to local register variables may be deleted, moved or simplified.
 2012-2018 Microchip Technology Inc. DS50002071G-page 337

MPLAB® XC16 C Compiler User’s Guide
F.4 CHANGING NON-AUTO VARIABLE ALLOCATION

Another way to locate data is by placing the variable into a user-defined section, and
specifying the starting address of that section in a custom linker script. This is done as
follows:

1. Modify the data declaration in the C source to specify a user-defined section.

2. Add the user-defined section to a custom linker script file to specify the starting
address of the section.

For example, to locate the variable Mabonga at address 0x1000 in data memory, first
declare the variable as follows in the C source:

int __attribute__((__section__(".myDataSection"))) Mabonga =
1;

The section attribute specifies that the variable should be placed in a section
named.myDataSection, rather than the default .data section. It does not specify
where the user-defined section is to be located. Again, that must be done in a custom
linker script, as follows. Using the device-specific linker script as a base, add the fol-
lowing section definition:

.myDataSection 0x1000 :
 {
 *(.myDataSection);
 } >data

This specifies that the output file should contain a section named.myDataSection
starting at location 0x1000 and containing all input sections named.myDataSection.
Since, in this example, there is a single variable Mabonga in that section, then the
variable will be located at address 0x1000 in data memory.

F.5 CONFIGURATION SETTINGS USING MACROS

Configuration Settings macros are provided that can be used to set Configuration bits.
For example, to set the FOSC bit using a macro, the following line of code can be
inserted before the beginning of your C source code:

 _FOSC(CSW_FSCM_ON & EC_PLL16);

This would enable the external clock, with the PLL set to 16x, and enable clock
switching and fail-safe clock monitoring.

Similarly, to set the FBORPOR bit:

 _FBORPOR(PBOR_ON & BORV_27 & PWRT_ON_64 & MCLR_DIS);

This would enable Brown-out Reset at 2.7V, and initialize the Power-up timer to 64 ms,
and configure the use of the MCLR pin for I/O.

Configuration Settings macros are defined in compiler header files for each device.
Please refer to your device’s header files for a complete listing of related macros.
Header files are located, by default, in:

<MPLAB XC16 Installation folder>/vx.xx/support/device/h

where vx.xx is the compiler version and device is your 16-bit device family.

Note: Do not use this deprecated method for setting configuration bits with
pragma statements used to set configuration bits (see
Section 6.5 “Configuration Bit Access”) in the same code.
DS50002071G-page 338 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER

USER’S GUIDE

Appendix G. Built-in Functions
G.1 INTRODUCTION

This appendix lists the built-in functions that are specific to MPLAB XC16 C Compiler.

Built-in functions give the C programmer access to assembler operators or machine
instructions that are currently only accessible using inline assembly, but are sufficiently
useful that they are applicable to a broad range of applications. Built-in functions are
coded in C source files syntactically like function calls, but they are compiled to assem-
bly code that directly implements the function and do not involve function calls or library
routines.

There are a number of reasons why providing built-in functions is preferable to
requiring programmers to use inline assembly. They include the following:

1. Providing built-in functions for specific purposes simplifies coding.

2. Certain optimizations are disabled when inline assembly is used. This is not the
case for built-in functions.

3. For machine instructions that use dedicated registers, coding inline assembly
while avoiding register allocation errors can require considerable care. The
built-in functions make this process simpler as you do not need to be concerned
with the particular register requirements for each individual machine instruction.
 2012-2018 Microchip Technology Inc. DS50002071G-page 339

MPLAB® XC16 C Compiler User’s Guide
TABLE G-1: BUILT-IN FUNCTION LIST - ALPHABETICAL

__builtin_ACCL, __builtin_ACCH, __builtin_ACCU __builtin_mulss

__builtin_add __builtin_mulsu

__builtin_addab __builtin_mulus

__builtin_addr_low, __builtin_addr_high,
__builtin_addr

__builtin_muluu

__builtin_btg __builtin_nop

__builtin_clr __builtin_psvoffset

__builtin_clr_prefetch __builtin_psvpage

__builtin_clrwdt __builtin_pwrsav

__builtin_dataflashoffset __builtin_readsfr

__builtin_disable_interrupts __builtin_return_address

__builtin_disi __builtin_sac

__builtin_divf __builtin_sacd

__builtin_divmodsd __builtin_sacr

__builtin_divmodud __builtin_section_begin, __builtin_section_end

__builtin_divsd __builtin_section_size

__builtin_divud __builtin_set_isr_state

__builtin_dmaoffset __builtin_sftac

__builtin_dmapage __builtin_software_breakpoint

__builtin_ed __builtin_subab

__builtin_edac __builtin_tbladdress

__builtin_edsoffset __builtin_tbloffset

__builtin_edspage __builtin_tblpage

__builtin_enable_interrupts __builtin_tblrdh

__builtin_fbcl __builtin_tblrdl

__builtin_get_isr_state __builtin_tblwth

__builtin_lac __builtin_tblwtl

__builtin_lacd __builtin_write_CRYOTP

__builtin_mac __builtin_write_DISICNT

__builtin_modsd __builtin_write_NVM

__builtin_modud __builtin_write_NVM_secure

__builtin_movsac __builtin_write_OSCCONH

__builtin_mpy __builtin_write_OSCCONL

__builtin_mpyn __builtin_write_PWMSFR

__builtin_msc __builtin_write_RTCWEN

__builtin_write_RTCC_WRLOCK
DS50002071G-page 340 2012-2018 Microchip Technology Inc.

Built-in Functions
G.2 BUILT-IN FUNCTION DESCRIPTIONS

This section describes the programmer interface to the compiler built-in functions. Since the functions are
“built in,” there are no header files associated with them. Similarly, there are no command-line switches
associated with the built-in functions – they are always available. The built-in function names are chosen
such that they belong to the compiler’s namespace (they all have the prefix __builtin_), so they will not
conflict with function or variable names in the programmer’s namespace.

__builtin_ACCL, __builtin_ACCH, __builtin_ACCU

Description: This function can be used to gain access to the low, high, or upper portion of an
accumulator value. For example:
 volatile register int value asm("A");
 int result = __builtin_ACCL(value);
The example result will be the low 16-bits stored in the accumulator which holds value.
These builtins allow access to the parts of an accumulator in a way that is optimizer safe.

Prototype: int __builtin_ACCL(int value);
int __builtin_ACCH(int value);
int __builtin_ACCU(int value);

Argument: value Integer number to set accumulator value.

Return Value: Returns the low, high or upper portion of the accumulator.

Assembler Operator/
Machine Instruction:

None

Error Messages None

__builtin_add

Description: Add value to the accumulator specified by result with a shift specified by literal shift. For
example:
 volatile register int result asm("A");
 int value;
 result = __builtin_add(result,value,0);
If value is held in w0, the following will be generated:
 add w0, #0, A

Prototype: int __builtin_add(int Accum,int value,
 const int shift);

Argument: Accum Accumulator to add.
value Integer number to add to accumulator value.
shift Amount to shift resultant accumulator value.

Return Value: Returns the shifted addition result to an accumulator.

Assembler Operator/
Machine Instruction:

add

Error Messages An error message will be displayed if:
• the result is not an accumulator register
• argument 0 is not an accumulator
• the shift value is not a literal within range
 2012-2018 Microchip Technology Inc. DS50002071G-page 341

MPLAB® XC16 C Compiler User’s Guide
__builtin_addab

Description: Add accumulators A and B with the result written back to the specified accumulator. For
example:
 volatile register int result asm("A");
 volatile register int B asm("B");

 result = __builtin_addab(result,B);
will generate:
 add A

Prototype: int __builtin_addab(int Accum_a, int Accum_b);

Argument: Accum_a First accumulator to add.
Accum_b Second accumulator to add.

Return Value: Returns the addition result to an accumulator.

Assembler Operator/
Machine Instruction:

add

Error Messages An error message will be displayed if the result is not an accumulator register.

__builtin_addr_low, __builtin_addr_high, __builtin_addr

Description: Determine the offset address of a symbol.

Prototype: unsigned int __builtin_addr_low(&symbol);
unsigned int __builtin_addr_high(&symbol);
unsigned int __builtin_addr(&symbol);

Argument: &symbol The literal address of the symbol

Return Value: Returns the low, high or full address of a symbol, without any adjustment for physical
address paging requirements. Therefore, the values returned represent a literal offset and
cannot be used for addressing purposes without manipulation.

Assembler Operator/
Machine Instruction:

addr_low, addr_high, addr

Error Messages An error message will be displayed if the argument is not a literal address.
DS50002071G-page 342 2012-2018 Microchip Technology Inc.

Built-in Functions
__builtin_btg

Description: This function will generate a btg machine instruction.
Some examples include:

int i; /* near by default */
int l __attribute__((far));

struct foo {
 int bit1:1;
} barbits;

int bar;

void some_bittoggles() {
 register int j asm("w9");
 int k;

 k = i;

 __builtin_btg(&i,1);
 __builtin_btg(&j,3);
 __builtin_btg(&k,4);
 __builtin_btg(&l,11);

 return j+k;
}

Note that taking the address of a variable in a register will produce warning by the compiler
and cause the register to be saved onto the stack (so that its address may be taken); this
form is not recommended. This caution only applies to variables explicitly placed in registers
by the programmer.

Prototype: void __builtin_btg(unsigned int *, unsigned int 0xn);
Argument: * A pointer to the data item for which a bit should be toggled.

0xn A literal value in the range of 0 to 15.

Return Value: Returns a btg machine instruction.

Assembler Operator/
Machine Instruction:

btg

Error Messages An error message will be displayed if the parameter values are not within range.

__builtin_clr

Description: Clear the specified accumulator.
For example:
 volatile register int result asm("A");
 result = __builtin_clr();
will generate:
 clr A

Prototype: int __builtin_clr(void);

Argument: None

Return Value: Returns the cleared value result to an accumulator.

Assembler Operator/
Machine Instruction:

clr

Error Messages An error message will be displayed if the result is not an accumulator register.
 2012-2018 Microchip Technology Inc. DS50002071G-page 343

MPLAB® XC16 C Compiler User’s Guide
__builtin_clr_prefetch

Description: Clear an accumulator and prefetch data ready for a future MAC operation.
xptr may be null to signify no X prefetch to be performed, in which case the values of
xincr and xval are ignored, but required.
yptr may be null to signify no Y prefetch to be performed, in which case the values of
yincr and yval are ignored, but required.
xval and yval nominate the address of a C variable where the prefetched value will be
stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.
If AWB is non null, the other accumulator will be written back into the referenced variable.
For example:
 volatile register int result asm("A");
 volatile register int B asm("B");
 int x_memory_buffer[256]
 __attribute__((space(xmemory)));
 int y_memory_buffer[256]
 __attribute__((space(ymemory)));
 int *xmemory;
 int *ymemory;
 int awb;
 int xVal, yVal;

 xmemory = x_memory_buffer;
 ymemory = y_memory_buffer;
 result = __builtin_clr(&xmemory, &xVal, 2,
 &ymemory, &yVal, 2, &awb, B);
might generate:
 clr A, [w8]+=2, w4, [w10]+=2, w5, w13

The compiler may need to spill w13 to ensure that it is available for the write-back. It may be
recommended to users that the register be claimed for this purpose.
After this instruction:
• result will be cleared
• xVal will contain x_memory_buffer[0]
• yVal will contain y_memory_buffer[0]
• xmemory and ymemory will be incremented by 2, ready for the next mac operation

Prototype: int __builtin_clr_prefetch(
 int **xptr, int *xval, int xincr,
 int **yptr, int *yval, int yincr, int *AWB,
 int AWB_accum);

Argument: xptr Integer pointer to x prefetch
xval Integer value of x prefetch
xincr Integer increment value of x prefetch
yptr Integer pointer to y prefetch
yval Integer value of y prefetch
yincr Integer increment value of y prefetch
AWB Accumulator write back location
AWB_accum Accumulator to write back

Return Value: Returns the cleared value result to an accumulator.

Assembler Operator/
Machine Instruction:

clr

Error Messages An error message will be displayed if:
• the result is not an accumulator register
• xval is a null value but xptr is not null
• yval is a null value but yptr is not null
• AWB_accum is not an accumulator and AWB is not null
DS50002071G-page 344 2012-2018 Microchip Technology Inc.

Built-in Functions
__builtin_clrwdt

Description: Clear watchdog timer.

Prototype: void __builtin_clrwdt(void);

Argument: None

Return Value: None

Assembler Operator/
Machine Instruction:

clrwdt

Error Messages None

__builtin_dataflashoffset

Description: Disable the specified interrupts.

Prototype: int __builtin_dataflashoffset(unsigned int &var);
Argument: &var = address of pointer to a dataflash variable.

Return Value: Offset value as an integer.

Assembler Operator/
Machine Instruction:

Error Messages None

__builtin_disable_interrupts

Description: Disable the specified interrupts.

Prototype: void __builtin_disable_interrupts(void);

Argument: None

Return Value: None

Assembler Operator/
Machine Instruction:

Error Messages None

__builtin_disi

Description: Disable all interrupts for a specified number of instruction cycles.
See Section 14.7 “Enabling/Disabling Interrupts”.
Will emit the specified DISI instruction at the point it appears in the source program: disi
#<disi_count>

Prototype: void __builtin_disi(int disi_count);
Argument: disi_count instruction cycle count. Must be a literal integer between 0 and 16383.

Return Value: N/A

Assembler Operator/
Machine Instruction:

disi.f
 2012-2018 Microchip Technology Inc. DS50002071G-page 345

MPLAB® XC16 C Compiler User’s Guide
__builtin_divf

Description: Computes the quotient num / den. A math error exception occurs if den is zero. Function
arguments are signed, as is the function result.

Prototype: signed int __builtin_divf(signed int num,
 signed int den);

Argument: num numerator
den denominator

Return Value: Returns the signed integer value of the quotient num / den.

Assembler Operator/
Machine Instruction:

div.f

__builtin_divmodsd

Description: Issues the 16-bit architecture’s native signed divide support with the same restrictions given
in the “dsPIC30F/33F Programmer’s Reference Manual” (DS70157). Notably, if the quotient
does not fit into a 16-bit result, the results (including remainder) are unexpected. This form
of the built-in function will capture both the quotient and remainder.

Prototype: signed int __builtin_divmodsd(
 signed long dividend, signed int divisor,
 signed int *remainder);

Argument: dividend number to be divided
divisor number to divide by
remainder pointer to remainder

Return Value: Quotient and remainder.

Assembler Operator/
Machine Instruction:

divmodsd

Error Messages None

__builtin_divmodud

Description: Issues the 16-bit architecture’s native unsigned divide support with the same restrictions
given in the “dsPIC30F/33F Programmer’s Reference Manual” (DS70157). Notably, if the
quotient does not fit into a 16-bit result, the results (including remainder) are unexpected.
This form of the built-in function will capture both the quotient and remainder.

Prototype: unsigned int __builtin_divmodud(
 unsigned long dividend, unsigned int divisor,
 unsigned int *remainder);

Argument: dividend number to be divided
divisor number to divide by
remainder pointer to remainder

Return Value: Quotient and remainder.

Assembler Operator/
Machine Instruction:

divmodud

Error Messages None
DS50002071G-page 346 2012-2018 Microchip Technology Inc.

Built-in Functions
__builtin_divsd

Description: Computes the quotient num / den. A math error exception occurs if den is zero. Function
arguments are signed, as is the function result. The command-line option -Wconversions
can be used to detect unexpected sign conversions.

Prototype: int __builtin_divsd(const long num, const int den);
Argument: num numerator

den denominator

Return Value: Returns the signed integer value of the quotient num / den.

Assembler Operator/
Machine Instruction:

div.sd

__builtin_divud

Description: Computes the quotient num / den. A math error exception occurs if den is zero. Function
arguments are unsigned, as is the function result. The command-line option -Wconver-
sions can be used to detect unexpected sign conversions.

Prototype: unsigned int __builtin_divud(const unsigned
 long num, const unsigned int den);

Argument: num numerator
den denominator

Return Value: Returns the unsigned integer value of the quotient num / den.

Assembler Operator/
Machine Instruction:

div.ud

__builtin_dmaoffset

Description: Obtains the offset of a symbol within DMA memory.
For example:
 unsigned int result;
 char buffer[256] __attribute__((space(dma)));

 result = __builtin_dmaoffset(&buffer);

Might generate:
 mov #dmaoffset(buffer), w0

Prototype: unsigned int __builtin_dmaoffset(const void *p);
Argument: *p pointer to DMA address value

Return Value: Returns the offset to a variable located in DMA memory.

Assembler Operator/
Machine Instruction:

dmaoffset

Error Messages An error message will be displayed if the parameter is not the address of a global symbol.
 2012-2018 Microchip Technology Inc. DS50002071G-page 347

MPLAB® XC16 C Compiler User’s Guide
__builtin_dmapage

Description: Obtains the page number of a symbol within DMA memory.
For example:
 unsigned int result;
 char buffer[256] __attribute__((space(dma)));

 result = __builtin_dmapage(&buffer);

Might generate:
 mov #dmapage(buffer), w0

Prototype: unsigned int __builtin_dmapage(const void *p);
Argument: *p pointer to DMA address value

Return Value: Returns the page number of a variable located in DMA memory.

Assembler Operator/
Machine Instruction:

dmapage

Error Messages An error message will be displayed if the parameter is not the address of a global symbol.

__builtin_ed

Description: Squares sqr, returning it as the result. Also prefetches data for future square operation by
computing **xptr - **yptr and storing the result in *distance.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.
For example:
 volatile register int result asm("A");
 int *xmemory, *ymemory;
 int distance;

 result = __builtin_ed(distance,
 &xmemory, 2,
 &ymemory, 2,
 &distance);

might generate:
 ed w4*w4, A, [w8]+=2, [W10]+=2, w4

Prototype: int __builtin_ed(int sqr, int **xptr, int xincr,
 int **yptr, int yincr, int *distance);

Argument: sqr Integer squared value.
xptr Integer pointer to pointer to x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yincr Integer increment value of y prefetch.
distance Integer pointer to distance.

Return Value: Returns the squared result to an accumulator.

Assembler Operator/
Machine Instruction:

ed

Error Messages An error message will be displayed if:
• the result is not an accumulator register
• xptr is null
• yptr is null
• distance is null
DS50002071G-page 348 2012-2018 Microchip Technology Inc.

Built-in Functions
__builtin_edac

Description: Squares sqr and sums with the nominated accumulator register, returning it as the result.
Also prefetches data for future square operation by computing **xptr - **yptr and stor-
ing the result in *distance.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.
For example:
 volatile register int result asm("A");
 int *xmemory, *ymemory;
 int distance;

 result = __builtin_ed(result, distance,
 &xmemory, 2,
 &ymemory, 2,
 &distance);

might generate:
 edac w4*w4, A, [w8]+=2, [W10]+=2, w4

Prototype: int __builtin_edac(int Accum, int sqr,
 int **xptr, int xincr, int **yptr, int yincr,
 int *distance);

Argument: Accum Accumulator to sum.
sqr Integer squared value.
xptr Integer pointer to pointer to x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yincr Integer increment value of y prefetch.
distance Integer pointer to distance.

Return Value: Returns the squared result to specified accumulator.

Assembler Operator/
Machine Instruction:

edac

Error Messages An error message will be displayed if:
• the result is not an accumulator register
• Accum is not an accumulator register
• xptr is null
• yptr is null
• distance is null
 2012-2018 Microchip Technology Inc. DS50002071G-page 349

MPLAB® XC16 C Compiler User’s Guide
__builtin_edsoffset

Description: Returns the eds page offset of the object whose address is given as a parameter. The argu-
ment p must be the address of an object in an Extended Data Space (EDS); otherwise an
error message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables.”

Prototype: unsigned int __builtin_edsoffset(const void *p);
Argument: p object address

Return Value: Returns the eds page number offset of the object whose address is given as a parameter.

Assembler Operator/
Machine Instruction:

edsoffset

Error Messages The following error message is produced when this function is used incorrectly:
“Argument to __builtin_edsoffset() is not the address of an object in extended data
space.”
The argument must be an explicit object address.
For example, if obj is object in an executable or read-only section, the following syntax is
valid:
unsigned page = __builtin_edsoffset(&obj);

__builtin_edspage

Description: Returns the eds page number of the object whose address is given as a parameter. The
argument p must be the address of an object in an Extended Data Space (EDS); otherwise
an error message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables.”

Prototype: unsigned int __builtin_edspage(const void *p);
Argument: p object address

Return Value: Returns the eds page number of the object whose address is given as a parameter.

Assembler Operator/
Machine Instruction:

edspage

Error Messages The following error message is produced when this function is used incorrectly:
“Argument to __builtin_edspage() is not the address of an object in extended data
space.”
The argument must be an explicit object address.
For example, if obj is object in an executable or read-only section, the following syntax is
valid:
unsigned page = __builtin_edspage(&obj);

__builtin_enable_interrupts

Description: Enable the specified interrupts.

Prototype: void __builtin_enable_interrupts(void);

Argument: None

Return Value: None

Assembler Operator/
Machine Instruction:

Error Messages None
DS50002071G-page 350 2012-2018 Microchip Technology Inc.

Built-in Functions
__builtin_fbcl

Description: Finds the first bit change from left in value. This is useful for dynamic scaling of fixed-point
data. For example:
 int result, value;
 result = __builtin_fbcl(value);

might generate:
 fbcl w4, w5

Prototype: int __builtin_fbcl(int value);
Argument: value Integer number to check for change.

Return Value: Returns a literal value sign extended to represent the number of bits to shift left.

Assembler Operator/
Machine Instruction:

fbcl

Error Messages None

__builtin_get_isr_state

Description: Determine the current CPU interrupt state.

Prototype: unsigned int __builtin_get_isr_state(void);

Argument: None

Return Value: Returns an integer value specifying the current CPU interrupt state.

Assembler Operator/
Machine Instruction:

get_isr_state

Error Messages None

__builtin_lac

Description: Shifts value by shift (a literal between -8 and 7) and returns the value to be stored into the
accumulator register. For example:
 volatile register int result asm("A");
 int value;
 result = __builtin_lac(value,3);

Might generate:
 lac w4, #3, A

Prototype: int __builtin_lac(int value, int shift);
Argument: value Integer number to be shifted.

shift Literal amount to shift.

Return Value: Returns the shifted result to an accumulator.

Assembler Operator/
Machine Instruction:

lac

Error Messages An error message will be displayed if:
• the result is not an accumulator register
• the shift value is not a literal within range
 2012-2018 Microchip Technology Inc. DS50002071G-page 351

MPLAB® XC16 C Compiler User’s Guide
__builtin_lacd

Description: Shifts a value by shift and returns the value to be stored into the accumulator register. For
example:
 volatile register int result asm("A");
 long value;
 result = __builtin_lacd(value,3);

Prototype: int __builtin_lacd(long value, unsigned int shift);
Argument: value Long integer number to be shifted.

shift Literal amount to shift between -16 and 15.

Return Value: Returns the shifted result to an accumulator.

Assembler Operator/
Machine Instruction:

None

Error Messages An error message will be displayed if:
• the result is not an accumulator register
• the shift value is not a literal within range

__builtin_mac

Description: Computes a x b and sums with accumulator; also prefetches data ready for a future MAC
operation.
xptr may be null to signify no X prefetch to be performed, in which case the values of
xincr and xval are ignored, but required.
yptr may be null to signify no Y prefetch to be performed, in which case the values of
yincr and yval are ignored, but required.
xval and yval nominate the address of a C variable where the prefetched value will be
stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.
If AWB is non null, the other accumulator will be written back into the referenced variable.
For example:
 volatile register int result asm("A");
 volatile register int B asm("B");
 int *xmemory;
 int *ymemory;
 int xVal, yVal;

 result = __builtin_mac(result, xVal, yVal,
 &xmemory, &xVal, 2,
 &ymemory, &yVal, 2, 0, B);

might generate:
 mac w4*w5, A, [w8]+=2, w4, [w10]+=2, w5

Prototype: int __builtin_mac(int Accum, int a, int b,
 int **xptr, int *xval, int xincr,
 int **yptr, int *yval, int yincr,
 int *AWB, int AWB_accum);

Argument: Accum Accumulator to sum.
a Integer multiplicand.
b Integer multiplier.
xptr Integer pointer to pointer to x prefetch.
xval Integer pointer to value of x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yval Integer pointer to value of y prefetch.
yincr Integer increment value of y prefetch.
AWB Accumulator write back location.
AWB_accum Accumulator to write back.
DS50002071G-page 352 2012-2018 Microchip Technology Inc.

Built-in Functions
Return Value: Returns the value of accumulator plus the result of a x b.

Assembler Operator/
Machine Instruction:

mac

Error Messages An error message will be displayed if:
• the result is not an accumulator register
• Accum is not an accumulator register
• xval is a null value but xptr is not null
• yval is a null value but yptr is not null
• AWB_accum is not an accumulator register and AWB is not null

__builtin_modsd

Description: Issues the 16-bit architecture’s native signed divide support with the same restrictions given
in the “dsPIC30F/33F Programmer’s Reference Manual” (DS70157). Notably, if the quotient
does not fit into a 16-bit result, the results (including remainder) are unexpected. This form
of the built-in function will capture only the remainder.

Prototype: signed int __builtin_modsd(signed long dividend,
 signed int divisor);

Argument: dividend number to be divided
divisor number to divide by

Return Value: Remainder.

Assembler Operator/
Machine Instruction:

modsd

Error Messages None

__builtin_modud

Description: Issues the 16-bit architecture’s native unsigned divide support with the same restrictions
given in the “dsPIC30F/33F Programmer’s Reference Manual” (DS70157). Notably, if the
quotient does not fit into a 16-bit result, the results (including remainder) are unexpected.
This form of the built-in function will capture only the remainder.

Prototype: unsigned int __builtin_modud(unsigned long dividend,
 unsigned int divisor);

Argument: dividend number to be divided
divisor number to divide by

Return Value: Remainder.

Assembler Operator/
Machine Instruction:

modud

Error Messages None

__builtin_mac (Continued)
 2012-2018 Microchip Technology Inc. DS50002071G-page 353

MPLAB® XC16 C Compiler User’s Guide
__builtin_movsac

Description: Computes nothing, but prefetches data ready for a future MAC operation.
xptr may be null to signify no X prefetch to be performed, in which case the values of
xincr and xval are ignored, but required.
yptr may be null to signify no Y prefetch to be performed, in which case the values of
yincr and yval are ignored, but required.
xval and yval nominate the address of a C variable where the prefetched value will be
stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.
If AWB is non null, the other accumulator will be written back into the referenced variable.
For example:
 volatile register int result asm("A");
 int *xmemory;
 int *ymemory;
 int xVal, yVal;

 __builtin_movsac(&xmemory, &xVal, 2,
 &ymemory, &yVal, 2, 0, 0);

might generate:
 movsac A, [w8]+=2, w4, [w10]+=2, w5

Prototype: void __builtin_movsac(
 int **xptr, int *xval, int xincr,
 int **yptr, int *yval, int yincr, int *AWB
 int AWB_accum);

Argument: xptr Integer pointer to pointer to x prefetch.
xval Integer pointer to value of x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yval Integer pointer to value of y prefetch.
yincr Integer increment value of y prefetch.
AWB Accumulator write back location.
AWB_accum Accumulator to write back.

Return Value: None

Assembler Operator/
Machine Instruction:

movsac

Error Messages An error message will be displayed if:
• the result is not an accumulator register
• xval is a null value but xptr is not null
• yval is a null value but yptr is not null
• AWB_accum is not an accumulator register and AWB is not null
DS50002071G-page 354 2012-2018 Microchip Technology Inc.

Built-in Functions
__builtin_mpy

Description: Computes a x b ; also prefetches data ready for a future MAC operation.
xptr may be null to signify no X prefetch to be performed, in which case the values of
xincr and xval are ignored, but required.
yptr may be null to signify no Y prefetch to be performed, in which case the values of
yincr and yval are ignored, but required.
xval and yval nominate the address of a C variable where the prefetched value will be
stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.
For example:
 volatile register int result asm("A");
 int *xmemory;
 int *ymemory;
 int xVal, yVal;

 result = __builtin_mpy(xVal, yVal,
 &xmemory, &xVal, 2,
 &ymemory, &yVal, 2);

might generate:
 mpy w4*w5, A, [w8]+=2, w4, [w10]+=2, w5

Prototype: int __builtin_mpy(int a, int b,
 int **xptr, int *xval, int xincr,
 int **yptr, int *yval, int yincr);

Argument: a Integer multiplicand.
b Integer multiplier.
xptr Integer pointer to pointer to x prefetch.
xval Integer pointer to value of x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yval Integer pointer to value of y prefetch.
yincr Integer increment value of y prefetch.
AWB Integer pointer to accumulator selection.

Return Value: Returns the value of a x b.

Assembler Operator/
Machine Instruction:

mpy

Error Messages An error message will be displayed if:
• the result is not an accumulator register
• xval is a null value but xptr is not null
• yval is a null value but yptr is not null
 2012-2018 Microchip Technology Inc. DS50002071G-page 355

MPLAB® XC16 C Compiler User’s Guide
__builtin_mpyn

Description: Computes -a x b ; also prefetches data ready for a future MAC operation.
xptr may be null to signify no X prefetch to be performed, in which case the values of
xincr and xval are ignored, but required.
yptr may be null to signify no Y prefetch to be performed, in which case the values of
yincr and yval are ignored, but required.
xval and yval nominate the address of a C variable where the prefetched value will be
stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.
For example:
 volatile register int result asm("A");
 int *xmemory;
 int *ymemory;
 int xVal, yVal;

 result = __builtin_mpy(xVal, yVal,
 &xmemory, &xVal, 2,
 &ymemory, &yVal, 2);

might generate:
 mpy.n w4*w5, A, [w8]+=2, w4, [w10]+=2, w5

Prototype: int __builtin_mpyn(int a, int b,
 int **xptr, int *xval, int xincr,
 int **yptr, int *yval, int yincr);

Argument: a Integer multiplicand.
b Integer multiplier.
xptr Integer pointer to pointer to x prefetch.
xval Integer pointer to value of x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yval Integer pointer to value of y prefetch.
yincr Integer increment value of y prefetch.
AWB Integer pointer to accumulator selection.

Return Value: Returns the value of -a x b.

Assembler Operator/
Machine Instruction:

mpyn

Error Messages An error message will be displayed if:
• the result is not an accumulator register
• xval is a null value but xptr is not null
• yval is a null value but yptr is not null
DS50002071G-page 356 2012-2018 Microchip Technology Inc.

Built-in Functions
__builtin_msc

Description: Computes a x b and subtracts from accumulator; also prefetches data ready for a future
MAC operation.
xptr may be null to signify no X prefetch to be performed, in which case the values of
xincr and xval are ignored, but required.
yptr may be null to signify no Y prefetch to be performed, in which case the values of
yincr and yval are ignored, but required.
xval and yval nominate the address of a C variable where the prefetched value will be
stored.
xincr and yincr may be the literal values: -6, -4, -2, 0, 2, 4, 6 or an integer value.
If AWB is non null, the other accumulator will be written back into the referenced variable.
For example:
 volatile register int result asm("A");
 int *xmemory;
 int *ymemory;
 int xVal, yVal;

 result = __builtin_msc(result, xVal, yVal,
 &xmemory, &xVal, 2,
 &ymemory, &yVal, 2, 0, 0);

might generate:
 msc w4*w5, A, [w8]+=2, w4, [w10]+=2, w5

Prototype: int __builtin_msc(int Accum, int a, int b,
 int **xptr, int *xval, int xincr,
 int **yptr, int *yval, int yincr, int *AWB,
 int AWB_accum);

Argument: Accum Accumulator to subtract.
a Integer multiplicand.
b Integer multiplier.
xptr Integer pointer to pointer to x prefetch.
xval Integer pointer to value of x prefetch.
xincr Integer increment value of x prefetch.
yptr Integer pointer to pointer to y prefetch.
yval Integer pointer to value of y prefetch.
yincr Integer increment value of y prefetch.
AWB Accumulator write back location.
AWB_accum Accumulator to write back.

Return Value: Returns the value of accumulator minus the result of a x b.

Assembler Operator/
Machine Instruction:

msc

Error Messages An error message will be displayed if:
• the result is not an accumulator register
• Accum is not an accumulator register
• xval is a null value but xptr is not null
• yval is a null value but yptr is not null
• AWB_accum is not an accumulator register and AWB is not null
 2012-2018 Microchip Technology Inc. DS50002071G-page 357

MPLAB® XC16 C Compiler User’s Guide
__builtin_mulss

Description: Computes the product p0 x p1. Function arguments are signed integers, and the function
result is a signed long integer. The command-line option -Wconversions can be used to
detect unexpected sign conversions.
For example:
 volatile register int a asm("A");
 signed long result;
 const signed int p0, p1;
 const unsigned int p2, p3;
 result = __builtin_mulss(p0,p1);
 a = __builtin_mulss(p0,p1);

Prototype: signed long __builtin_mulss(const signed int p0, const signed int
p1);

Argument: p0 multiplicand
p1 multiplier

Return Value: Returns the signed long integer value of the product p0 x p1. The value can either be
returned into a variable of type signed long or directly into an accumulator register.

Assembler Operator/
Machine Instruction:

mul.ss

__builtin_mulsu

Description: Computes the product p0 x p1. Function arguments are integers with mixed signs, and the
function result is a signed long integer. The command-line option -Wconversions can be
used to detect unexpected sign conversions. This function supports the full range of
addressing modes of the instruction, including immediate mode for operand p1.
For example:
 volatile register int a asm("A");
 signed long result;
 const signed int p0, p1;
 const unsigned int p2, p3;
 result = __builtin_mulsu(p0,p2);
 a = __builtin_mulsu(p0,p2);

Prototype: signed long __builtin_mulsu(const signed int p0, const unsigned int
p1);

Argument: p0 multiplicand
p1 multiplier

Return Value: Returns the signed long integer value of the product p0 x p1. The value can either be
returned into a variable of type signed long or directly into an accumulator register.

Assembler Operator/
Machine Instruction:

mul.su
DS50002071G-page 358 2012-2018 Microchip Technology Inc.

Built-in Functions
__builtin_mulus

Description: Computes the product p0 x p1. Function arguments are integers with mixed signs, and the
function result is a signed long integer. The command-line option -Wconversions can be
used to detect unexpected sign conversions. This function supports the full range of
addressing modes of the instruction.
For example:
 volatile register int a asm("A");
 signed long result;
 const signed int p0, p1;
 const unsigned int p2, p3;
 result = __builtin_mulus(p2,p0);
 a = __builtin_mulus(p2,p0);

Prototype: signed long __builtin_mulus(const unsigned int p0, const signed int
p1);

Argument: p0 multiplicand
p1 multiplier

Return Value: Returns the signed long integer value of the product p0 x p1. The value can either be
returned into a variable of type signed long or directly into an accumulator register.

Assembler Operator/
Machine Instruction:

mul.us

__builtin_muluu

Description: Computes the product p0 x p1. Function arguments are unsigned integers, and the function
result is an unsigned long integer. The command-line option -Wconversions can be used
to detect unexpected sign conversions. This function supports the full range of addressing
modes of the instruction, including immediate mode for operand p1.
For example:
 volatile register int a asm("A");
 unsigned long result;
 const signed int p0, p1;
 const unsigned int p2, p3;
 result = __builtin_muluu(p2,p3);
 a = __builtin_muluu(p2,p3);

Prototype: unsigned long __builtin_muluu(const unsigned int p0, const unsigned
int p1);

Argument: p0 multiplicand
p1 multiplier

Return Value: Returns the signed long integer value of the product p0 x p1. The value can either be
returned into a variable of type unsigned long or directly into an accumulator register.

Assembler Operator/
Machine Instruction:

mul.uu

__builtin_nop

Description: Generates a nop instruction.

Prototype: void __builtin_nop(void);

Argument: None

Return Value: Returns a no operation (nop).

Assembler Operator/
Machine Instruction:

nop
 2012-2018 Microchip Technology Inc. DS50002071G-page 359

MPLAB® XC16 C Compiler User’s Guide
__builtin_psvoffset

Description: Returns the psv page offset of the object whose address is given as a parameter. The argu-
ment p must be the address of an object in an EE data, PSV or executable memory space;
otherwise an error message is produced and the compilation fails. See the space attribute
in Section 2.3.1 “Specifying Attributes of Variables.”

Prototype: unsigned int __builtin_psvoffset(const void *p);
Argument: p object address

Return Value: Returns the psv page number offset of the object whose address is given as a parameter.

Assembler Operator/
Machine Instruction:

psvoffset

Error Messages The following error message is produced when this function is used incorrectly:
“Argument to __builtin_psvoffset() is not the address of an object in code, psv, or
eedata section”.
The argument must be an explicit object address.
For example, if obj is object in an executable or read-only section, the following syntax is
valid:
unsigned page = __builtin_psvoffset(&obj);

__builtin_psvpage

Description: Returns the psv page number of the object whose address is given as a parameter. The
argument p must be the address of an object in an EE data, PSV or executable memory
space; otherwise an error message is produced and the compilation fails. See the space
attribute in Section 2.3.1 “Specifying Attributes of Variables.”

Prototype: unsigned int __builtin_psvpage(const void *p);
Argument: p object address

Return Value: Returns the psv page number of the object whose address is given as a parameter.

Assembler Operator/
Machine Instruction:

psvpage

Error Messages The following error message is produced when this function is used incorrectly:
“Argument to __builtin_psvpage() is not the address of an object in code, psv, or
eedata section”.
The argument must be an explicit object address.
For example, if obj is object in an executable or read-only section, the following syntax is
valid:
unsigned page = __builtin_psvpage(&obj);

__builtin_pwrsav

Description: Enables/disables PIC32 MCU power saving modes.

Prototype: void __builtin_pwrsav(unsigned int p);
Argument: p 1 = enable, 0 = disable

Return Value: None

Assembler Operator/
Machine Instruction:

pwrsav

Error Messages None
DS50002071G-page 360 2012-2018 Microchip Technology Inc.

Built-in Functions
__builtin_readsfr

Description: Reads the Special Function Register (SFR).

Prototype: unsigned int __builtin_readsfr(const void *p);
Argument: p object address

Return Value: Returns the SFR value.

Assembler Operator/
Machine Instruction:

readsfr

Error Messages If the object address is not in the range of SFR memory space, an error will be produced.
Consult your device data sheet for the memory range.

__builtin_return_address

Description: Returns the return address of the current function, or of one of its callers. For the level
argument, a value of 0 yields the return address of the current function, a value of 1 yields
the return address of the caller of the current function, and so forth. When level exceeds the
current stack depth, 0 will be returned. This function should only be used with a non-zero
argument for debugging purposes.

Prototype: int __builtin_return_address (const int level);
Argument: level Number of frames to scan up the call stack.

Return Value: Returns the return address of the current function, or of one of its callers.

Assembler Operator/
Machine Instruction:

return_address

__builtin_sac

Description: Shifts a value by shift and returns the value. For example:
 volatile register int value asm("A");
 long result;
 result = __builtin_sac(value,3);

Prototype: long __builtin_sac(int value, int shift);
Argument: value Integer number to be shifted.

shift Literal amount to shift between -8 and 7

Return Value: Returns the shifted result.

Assembler Operator/
Machine Instruction:

None

Error Messages An error message will be displayed if:
• the result is not an accumulator register
• the shift value is not a literal within range
 2012-2018 Microchip Technology Inc. DS50002071G-page 361

MPLAB® XC16 C Compiler User’s Guide
__builtin_sacd

Description: Shifts value by shift and returns the value. For example:
 volatile register int value asm("A");
 int result;

 result = __builtin_sacd(value,3);
Might generate:
 sacd A, #3, w0

Prototype: int __builtin_sacd(int value, int shift);
Argument: value Integer number to be shifted.

shift Literal amount to shift between -16 and 15

Return Value: Returns the shifted result.

Assembler Operator/
Machine Instruction:

sacd

Error Messages An error message will be displayed if:
• the result is not an accumulator register
• the shift value is not a literal within range

__builtin_sacr

Description: Shifts value by shift and returns the value which is rounded using the rounding mode
determined by the CORCONbits.RND control bit.
For example:
 volatile register int value asm("A");
 int result;

 result = __builtin_sacr(value,3);
Might generate:
 sac.r A, #3, w0

Prototype: int __builtin_sacr(int value, int shift);
Argument: value Integer number to be shifted.

shift Literal amount to shift between -8 and 7

Return Value: Returns the shifted result to CORCON register.

Assembler Operator/
Machine Instruction:

sacr

Error Messages An error message will be displayed if:
• the result is not an accumulator register
• the shift value is not a literal within range

__builtin_section_begin, __builtin_section_end

Description: Get run-time information about a section beginning or ending address.

Prototype: unsigned long __builtin_section_begin("section_name");
unsigned long __builtin_section_end("section_name");

Argument: section_name name of the section

Return Value: Returns the beginning or ending address of the named section.

Assembler Operator/
Machine Instruction:

section_begin
section_end

Error Messages An error message will be displayed if the named section cannot be found.
DS50002071G-page 362 2012-2018 Microchip Technology Inc.

Built-in Functions
__builtin_section_size

Description: Get run-time information about a section’s size.

Prototype: unsigned long __builtin_section_size("section_name");
Argument: section_name name of the section

Return Value: Returns the size of the named section.

Assembler Operator/
Machine Instruction:

section_size

Error Messages An error message will be displayed if the named section cannot be found.

__builtin_set_isr_state

Description: Set the current CPU interrupt state.

Prototype: void __builtin_get_isr_state(unsigned int state);
Argument: state Integer value specifying the current CPU interrupt state.

Return Value: None

Assembler Operator/
Machine Instruction:

set_isr_state

Error Messages None

__builtin_sftac

Description: Shifts accumulator by shift. The valid shift range is -16 to 16.
For example:
 volatile register int result asm("A");
 int i;

 result = __builtin_sftac(result,i);
Might generate:
 sftac A, w0

Prototype: int __builtin_sftac(int Accum, int shift);
Argument: Accum Accumulator to shift.

shift Amount to shift.

Return Value: Returns the shifted result to an accumulator.

Assembler Operator/
Machine Instruction:

sftac

Error Messages An error message will be displayed if:
• the result is not an accumulator register
• Accum is not an accumulator register
• the shift value is not a literal within range
 2012-2018 Microchip Technology Inc. DS50002071G-page 363

MPLAB® XC16 C Compiler User’s Guide
__builtin_software_breakpoint

Description: Provides for a software breakpoint. If a debugger is attached, the IDE will halt. If no
debugger is attached, the device will reset.

Prototype: void __builtin_software_breakpoint(void);

Argument: None

Return Value: None

Assembler Operator/
Machine Instruction:

software_breakpoint

Error Messages None

__builtin_subab

Description: Subtracts accumulators A and B with the result written back to the specified accumulator.
For example:
 volatile register int result asm("A");
 volatile register int B asm("B");
 result = __builtin_subab(result,B);
will generate:
 sub A

Prototype: int __builtin_subab(int Accum_a, int Accum_b);
Argument: Accum_a Accumulator from which to subtract.

Accum_b Accumulator to subtract.

Return Value: Returns the subtraction result to an accumulator.

Assembler Operator/
Machine Instruction:

sub

Error Messages An error message will be displayed if the result is not an accumulator register.

__builtin_tbladdress

Description: Returns a value that represents the address of an object in program memory. The argument
p must be the address of an object in an EE data, PSV or executable memory space; other-
wise an error message is produced and the compilation fails. See the space attribute in
Section 2.3.1 “Specifying Attributes of Variables.”

Prototype: unsigned long __builtin_tbladdress(const void *p);
Argument: p object address

Return Value: Returns an unsigned long value that represents the address of an object in program
memory.

Assembler Operator/
Machine Instruction:

tbladdress

Error Messages The following error message is produced when this function is used incorrectly:
“Argument to __builtin_tbladdress() is not the address of an object in code, psv, or
eedata section”.
The argument must be an explicit object address.
For example, if obj is object in an executable or read-only section, the following syntax is
valid:
unsigned long page = __builtin_tbladdress(&obj);
DS50002071G-page 364 2012-2018 Microchip Technology Inc.

Built-in Functions
__builtin_tbloffset

Description: Returns the table page offset of the object whose address is given as a parameter. The
argument p must be the address of an object in an EE data, PSV or executable memory
space; otherwise an error message is produced and the compilation fails. See the space
attribute in Section 2.3.1 “Specifying Attributes of Variables.”

Prototype: unsigned int __builtin_tbloffset(const void *p);
Argument: p object address

Return Value: Returns the table page number offset of the object whose address is given as a parameter.

Assembler Operator/
Machine Instruction:

tbloffset

Error Messages The following error message is produced when this function is used incorrectly:
“Argument to __builtin_tbloffset() is not the address of an object in code, psv, or
eedata section.”
The argument must be an explicit object address.
For example, if obj is object in an executable or read-only section, the following syntax is
valid:
unsigned page = __builtin_tbloffset(&obj);

__builtin_tblpage

Description: Returns the table page number of the object whose address is given as a parameter. The
argument p must be the address of an object in an EE data, PSV or executable memory
space; otherwise an error message is produced and the compilation fails. See the space
attribute in Section 2.3.1 “Specifying Attributes of Variables.”

Prototype: unsigned int __builtin_tblpage(const void *p);
Argument: p object address

Return Value: Returns the table page number of the object whose address is given as a parameter.

Assembler Operator/
Machine Instruction:

tblpage

Error Messages The following error message is produced when this function is used incorrectly:
“Argument to __builtin_tblpage() is not the address of an object in code, psv, or
eedata section.”
The argument must be an explicit object address.
For example, if obj is object in an executable or read-only section, the following syntax is
valid:
unsigned page = __builtin_tblpage(&obj);

__builtin_tblrdh

Description: Issues the tblrdh.w instruction to read a word from Flash or EEData memory. You must
set up the TBLPAG to point to the appropriate page. To do this, you may make use of
__builtin_tbloffset() and __builtin_tblpage().
Please refer to your device data sheet or Family Reference Manual (FRM) for complete
details regarding reading and writing program Flash.

Prototype: unsigned int __builtin_tblrdh(unsigned int offset);
Argument: offset desired memory offset

Return Value: Contents of the memory address in Flash or EEData memory.

Assembler Operator/
Machine Instruction:

tblrdh

Error Messages None
 2012-2018 Microchip Technology Inc. DS50002071G-page 365

MPLAB® XC16 C Compiler User’s Guide
__builtin_tblrdl

Description: Issues the tblrdl.w instruction to read a word from Flash or EEData memory. You must
set up the TBLPAG to point to the appropriate page. To do this, you may make use of
__builtin_tbloffset() and__builtin_tblpage().
Please refer to your device data sheet or Family Reference Manual (FRM) for complete
details regarding reading and writing program Flash.

Prototype: unsigned int __builtin_tblrdl(unsigned int offset);
Argument: offset desired memory offset

Return Value: Contents of the memory address in Flash or EEData memory.

Assembler Operator/
Machine Instruction:

tblrdl

Error Messages None

__builtin_tblwth

Description: Issues the tblwth.w instruction to write a word to Flash or EEData memory. You must set
up the TBLPAG to point to the appropriate page. To do this, you may make use of
__builtin_tbloffset() and __builtin_tblpage().
Please refer to your device data sheet or Family Reference Manual (FRM) for complete
details regarding reading and writing program Flash.

Prototype: void __builtin_tblwth(unsigned int offset
 unsigned int data);

Argument: offset desired memory offset
data data to be written

Return Value: None

Assembler Operator/
Machine Instruction:

tblwth

Error Messages None

__builtin_tblwtl

Description: Issues the tblrdl.w instruction to write a word to Flash or EEData memory. You must set
up the TBLPAG to point to the appropriate page. To do this, you may make use of
__builtin_tbloffset() and __builtin_tblpage().
Please refer to your device data sheet or Family Reference Manual (FRM) or complete
details regarding reading and writing program Flash.

Prototype: void __builtin_tblwtl(unsigned int offset
 unsigned int data);

Argument: offset desired memory offset
data data to be written

Return Value: None

Assembler Operator/
Machine Instruction:

tblwtl

Error Messages None
DS50002071G-page 366 2012-2018 Microchip Technology Inc.

Built-in Functions
__builtin_write_CRYOTP

Description: Initiates a write to the Crypto OTP by issuing the correct unlock sequence and setting the
CRYWR bit.
Interrupts may need to be disabled for proper operation.
This builtin function can be used as a part of a complex sequence discussed in your
device data sheet or Family Reference Manual (FRM). See these documents for more
information.

Prototype: void __builtin_write_CRYOTP(void);

Argument: None

Return Value: None

Assembler Operator/
Machine Instruction:

mov #0x55, Wn
mov Wn, _CRYKEY
mov #0xAA, Wn
mov Wn, _CRYKEY
bset _CRYCON, #0
nop
nop

Error Messages None

__builtin_write_DISICNT

Description: Enables the Flash for writing by issuing the correct unlock sequence and enabling the Write
bit of the DISICNT register.
Interrupts may need to be disabled for proper operation.
This builtin function can be used as a part of a complex sequence discussed in your
device data sheet or Family Reference Manual (FRM). See these documents for more infor-
mation.

Prototype: void __builtin_write_DISICNT(DISI_save);
Argument: DISI_save - Specified value to save to DISICNT register

Return Value: None

Assembler Operator/
Machine Instruction:

Error Messages None
 2012-2018 Microchip Technology Inc. DS50002071G-page 367

MPLAB® XC16 C Compiler User’s Guide
__builtin_write_NVM

Description: Enables the Flash for writing by issuing the correct unlock sequence and enabling the Write
bit of the NVMCON register.
Interrupts may need to be disabled for proper operation.
This builtin function can be used as a part of a complex sequence discussed in your
device data sheet or Family Reference Manual (FRM). See these documents for more infor-
mation.

Prototype: void __builtin_write_NVM(void);

Argument: None

Return Value: None

Assembler Operator/
Machine Instruction:

mov #0x55, Wn
mov Wn, _NVMKEY
mov #0xAA, Wn
mov Wn, _NVMKEY
bset _NVMCON, #15
nop
nop

Error Messages None

__builtin_write_NVM_secure

Description: Enables the Flash for writing by issuing an unlock sequence specified by two keys and
enabling the Write bit of the NVMCON register. After completion, the two keys are cleared to
zero.
Interrupts may need to be disabled for proper operation.
This builtin function can be used as a part of a complex sequence discussed in your
device data sheet or Family Reference Manual (FRM). See these documents for more infor-
mation.

Prototype: void __builtin_write_NVM_secure(unsigned int key1,
 unsigned int key2);

Argument: key1 first key in the NVM unlock sequence
key2 second key in the NVM unlock sequence

Return Value: None

Assembler Operator/
Machine Instruction:

Depending on the location of the keys:
mov W0, Wn
mov Wn, _NVMKEY
mov W1, Wn
mov Wn, _NVMKEY
bset _NVMCON, #15
nop
nop

Error Messages None
DS50002071G-page 368 2012-2018 Microchip Technology Inc.

Built-in Functions
__builtin_write_OSCCONH

Description: Unlocks and writes its argument to OSCCONH.
Interrupts may need to be disabled for proper operation.
This builtin function can be used as a part of a complex sequence discussed in your
device data sheet or Family Reference Manual (FRM). See these documents for more infor-
mation.

Prototype: void __builtin_write_OSCCONH(unsigned char value);
Argument: value character to be written

Return Value: None

Assembler Operator/
Machine Instruction*:

mov #0x78, w0
mov #0x9A, w1
mov #_OSCCON+1, w2
mov.b w0, [w2]
mov.b w1, [w2]
mov.b value, [w2]

Error Messages None

* The exact sequence may be different.

__builtin_write_OSCCONL

Description: Unlocks and writes its argument to OSCCONL.
Interrupts may need to be disabled for proper operation.
This builtin function can be used as a part of a complex sequence discussed in your
device data sheet or Family Reference Manual (FRM). See these documents for more infor-
mation.

Prototype: void __builtin_write_OSCCONL(unsigned char value);
Argument: value character to be written

Return Value: None

Assembler Operator/
Machine Instruction*:

mov #0x46, w0
mov #0x57, w1
mov #_OSCCON, w2
mov.b w0, [w2]
mov.b w1, [w2]
mov.b value, [w2]

Error Messages None

* The exact sequence may be different.
 2012-2018 Microchip Technology Inc. DS50002071G-page 369

MPLAB® XC16 C Compiler User’s Guide
__builtin_write_PWMSFR

Description: Writes the PWM unlock sequence to the SFR pointed to by PWM_KEY and then writes
value to the SFR pointed to by PWM_sfr.

Prototype: void __builtin_write_PWMSFR(volatile unsigned int *PWM_sfr,
unsigned int value, volatile unsigned int *PWM_KEY);

Argument: PWM_sfr register to be written
value value to write
PWM_KEY hardware unlock key location

Return Value: None

Assembler Operator/
Machine Instruction:

mov #<it>PWM_KEY</it>, w3
mov #<it>value</it>, w2
mov #0x4321, w1
mov #0xABCD, w0
mov w1,[w3]
mov w0,[w3]
mov w2,[w3]

Error Messages None

Examples Example 1:
__builtin_write_PWMSFR(&PWM1CON1, 0x123, &PWM1KEY);

Example 2:
__builtin_write_PWMSFR(&P1FLTACON, 0x123, &PWMKEY);

The choice of PWM_KEY may depend upon architecture.

__builtin_write_RTCWEN

Description: Used to write to the RTCC Timer by implementing the unlock sequence by writing the cor-
rect unlock values to NVMKEY, and then setting the RTCWREN bit of RCFGCAL SFR.
Interrupts may need to be disabled for proper operation.
This builtin function can be used as a part of a complex sequence discussed in your
device data sheet or Family Reference Manual (FRM). See these documents for more infor-
mation.

Prototype: void __builtin_write_RTCWEN(void);

Argument: None

Return Value: None

Assembler Operator/
Machine Instruction:

mov #0x55,w0
mov w0,_NVMKEY
mov #0xAA,w0
mov w0,_NVMKEY
bset _RCFGCAL,#13
nop
nop

Error Messages None
DS50002071G-page 370 2012-2018 Microchip Technology Inc.

Built-in Functions
__builtin_write_RTCC_WRLOCK

Description: Used to write to the RTCC Timer by implementing the unlock sequence by writing the cor-
rect unlock values to NVMKEY, and then setting the RTCWREN bit of RCFGCAL SFR.
Interrupts may need to be disabled for proper operation.
This builtin function can be used as a part of a complex sequence discussed in your
device data sheet or Family Reference Manual (FRM). See these documents for more infor-
mation.

Prototype: void __builtin_write_RTCC_WRLOCK(void);

Argument: None

Return Value: None

Assembler Operator/
Machine Instruction:

mov #0x55,w0
mov w0,_NVMKEY
mov #0xAA,w0
mov w0,_NVMKEY
bclr _RTCCON1L,#11
nop
nop

Error Messages None
 2012-2018 Microchip Technology Inc. DS50002071G-page 371

MPLAB® XC16 C Compiler User’s Guide
NOTES:
DS50002071G-page 372 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER

USER’S GUIDE

Appendix H. Document Revision History
Revision A (April 2012)

Initial release of this document.

Revision B (July 2012)

• Chapter 2. “Common C Interface.” was added.

• Figure 4-2 “Software Development Tools Data Flow” was updated.

• Table 5-16 “Linking Options” now includes the -fill option.

• Added the -pack_upper_byte qualifier information in
Section 8.10.4 “__pack_upper_byte Type Qualifier.” and Section 10.10 “Packing
Data Stored in Flash.”

• Added DBRPAG/PSVPAG preservation bullet under Section 13.8 “Function Call
Conventions.”

• Fixed code syntax in Section 14.4 “Specifying the Interrupt Vector.”

• Fixed Eval Edition description under Chapter 18. “Optimizations.”

• Added “volatile” to SFR registers in Appendix G. “Built-in Functions.”

• Added built-in functions __builtin_write_CRYOTP and __builtin_write_NVM_se-
cure in Appendix G. “Built-in Functions.”.

Revision C (Sept 2013)

• Renamed MPLAB Assembler/Linker for PIC24 MCUs and dsPIC DSCs (and vari-
ants) to MPLAB XC16 Assembler/Linker.

• Changed executable output from .out to .elf.

• Updated MDB information in Section 1.4 “Compiler and Other Development
Tools.”

• Added Chapter 4. “XC16 Toolchain and MPLAB X IDE.” and Chapter 4. “XC16
Toolchain and MPLAB IDE v8”.

• Added options under Section 5.7 “Driver Option Descriptions.”:
-menable-fixed and -fsigned-bitfields.

• Added information on using #pragmas under Section 6.5 “Configuration Bit
Access.”

• Added fixed-point arithmetic support:

- Chapter 9. “Fixed-Point Arithmetic Support.”

- Section 8.4 “Floating-Point Data Types.”

- Section 12.2 “Register Variables.” (_Sat, _Fract, _Accum)

- Section 13.2.2 “Function Attributes.” (round)

- Section 13.8 “Function Call Conventions.” (_Fract, _Accum)

• Bitfield updates under Section 8.6.2 “Bit-fields in Structures.”

• Added the following attributes to Section 13.2.2 “Function Attributes.”: naked,
keep.

• Added ISR section naming under Section 14.3 “Writing an Interrupt Service Rou-
tine.” Also, Interrupt Vector information has been removed from this manual and
moved to the docs subdirectory of the compiler installation directory, as per
Section 14.4 “Specifying the Interrupt Vector.”
 2012-2018 Microchip Technology Inc. DS50002071G-page 373

Document Revision History
• Optimization details have been added to Chapter 18. “Optimizations.”

• Updates to Section 19.4.2 “Output Types and Device Macros.”

• Additions concerning bit-fields in Section A.10 “Structures, Unions, Enumerations
and Bit-Fields.” and #pragma config in Section A.14 “Preprocessing Direc-
tives.”

• Added built-in functions below to Appendix G. “Built-in Functions.”:

- __builtin_disable_interrupts

- __builtin_enable_interrupts

- __builtin_get_isr_state

- __builtin_set_isr_state

- __builtin_section_begin

- __builtin_section_end

- __builtin_section_size

• Added Appendix B. “Embedded Compiler Compatibility Mode.”

Revision D (August 2014)

• Added Chapter 3. “How To’s.”

• Removed Chapter 4. XC16 Toolchain and MPLAB IDE v8.

Revision E (December 2014)

• Throughout - Remove mention of MPLAB IDE v8.xx, except where necessary.

• Preface - Update to add “How To’s” chapter reference and remove “XC16 Tool-
chain and MPLAB IDE v8” chapter reference.

• Section 2.5.10 “Interrupt Functions.” - corrected a function.

• Section 4.2 “MPLAB X IDE and Tools Installation.” - updated the licensing infor-
mation.

• Section 4.5 “Project Setup.” - updated compiler options in MPLAB X IDE.

• Section 5.4.1.2 “User-Defined Libraries.” - added information on contents.

• Section 5.7.1 “Options Specific to 16-Bit Devices.” - added --partition option
for dual partition devices.

• Section 5.7.4 “Options for Controlling Warnings and Errors.” - split into subsec-
tions. Took information from the table and made it into a subsection for -W.

• Section 5.7.6 “Options for Controlling Optimization.”- split into subsections. Added
info to made a subsection for --ffunction-section option.
Added a cross-reference from Section 14.3 “Writing an Interrupt Service
Routine.”.

• Section 6.3.3 “Compile Time Memory Information.” - added section.
Added dataflash argument to that space attribute.

• Section 10.3.1 “Auto and Non-Auto Variables vs. Local and Global Variables.” -
section created from the last two paragraphs of Section 10.3.

• Section 13.2.2 “Function Attributes.” and Section 14.5.2 “context Attribute.” -
added information for the context attribute.

• Section 13.8 “Function Call Conventions.” - updated the table for EDS pointer
requirements.

• Section 14.3.3 “Coding ISRs.”, Section 14.4.1 “Interrupt Vector Usage.” and
Section 14.5.1 “Assembly and ISRs.” - updated code snippets.

• Section 14.4 “Specifying the Interrupt Vector.” - added information about movable
alternate interrupt tables, and split remaining text into two subsections.

• Section 16.3 “Using Inline Assembly Language.” - added compiler constraint let-
ters.

• Section 19.4.3 “Device Features Macros.” - clarified __HAS_DMA__ macros.
 2012-2018 Microchip Technology Inc. DS50002071G-page 374

MPLAB® XC16 C Compiler User’s Guide
• Appendix G. “Built-in Functions.” - added __builtin_write_NVM_secure and
__builtin_software_breakpoints; updated __builtin_enable_interrupts and
__builtin_disable_interrupts.

Revision F (July 2016)

• Updated DS numbers for XC16 ASM/LINK user’s guide and 16-bit libraries.

• Optimization information updated per license - Chapter 18. “Optimizations.”,
Section 4.5.3 “xc16-gcc (16-Bit C Compiler).” (Table 4-6), and
Section 5.7.6 “Options for Controlling Optimization.”.

• Section 6.5 “Configuration Bit Access.” - Added “Configuration Settings Using
Macros” moved to Appendix F. “Deprecated Features.”.

• Complex numbers not supported so removed references to support (Section 8.8).

• Section 10.14 “Co-resident Applications.” - Co-resident applications information
and reference.

• Section 14.7 “Enabling/Disabling Interrupts.” - Built-in name corrected,
__write_to_IEC() documented.

• Section 19.4.4 “Other Macros.” - Updated __LINE__ description.

• Appendix G. “Built-in Functions.” - Added __builtin_addr_low, __builtin_addr_high,
__builtin_addr, __builtin_clrwdt, __builtin_lacd, __builtin_sacd, __builtin_ACCL,
__builtin_ACCH, __builtin_ACCU, __builtin_write_DISICNT, __builtin_pwrsav.
Updated __builtin_movsac, __builtin_sacr, __builtin_write_RTCC_WRLOCK() -
replaces __builtin_write_RTCWEN().

Revision G (Feb 2018)

• Removed reference to obsolete Standard (STD) license.

• Section 3.3.7 “How Do I Build Libraries?.” - updated for new 5.4.1.3.

• Section 3.4.2.5 “Are There Any SFRs Usage Considerations?.” added section.

• Section 3.6.2 “Why Can’t I Debug my Code after I Optimize?.” - updated for new
18.4.

• Section 3.6.6 “What are the Speed vs. Size Tradeoffs?.” added section.

• Section 4.5.3 “xc16-gcc (16-Bit C Compiler).” - Table 4-5 updated and footnotes
added, -mnear-char removed. Table 4-6 updated to
remove-mno-override-inline.

• Section 4.5.4 “xc16-ld (16-Bit Linker).” - corrected definition for “Use Local Stack”.

• Section 5.2.1 “Drive Command-Line Format.” - added linker script to
command-line example to avoid inconsistent warnings depending on device.

• Section 5.4.1.2 “User-Defined Libraries.” - moved some content to 5.4.1.3.

• Section 5.4.1.3 “User-Defined Libraries Development.” - added section.

• Section 5.7.1 “Options Specific to 16-Bit Devices.” - added -mno-eds-warn,
-mno-file, -moptimize-page-setting, -mlegacy-libc,
-mprint-builtins, -mprint-devices, -mprint-mchp-search-dirs,
-mno-errata, -msmart-io-format, -msfr-warn.

• Section 5.7.6.3 “Options that Specify Machine-Independent Flags.” - added
-fnofallback.

• Section 5.7.4.1 “Options to Control the Amount and Types of Warnings.” - remove
from Table 5-8 -pedantic, -pedantic-errors and -Wunused-parameter.

• Section 5.7.4.2 “Options that are not Implied by -Wall.” - added -Wextra; fixed
-Wlarger-than=len.

• Section 5.7.7 “Options for Controlling the Preprocessor.” - added -iquote.

• Section 6.3.2 “Device Support Information.” - added section.

• Section 6.8 “Using EDS.” - added section.
DS50002071G-page 375 2012-2018 Microchip Technology Inc.

Document Revision History
• Section 8.11 “Variable Attributes.” - first paragraph updated; clarified per-
sistent attribute usage.

• Section 13.2.2 “Function Attributes.” - added optimize attribute.

• Section 14.4 “Specifying the Interrupt Vector.” - changed to AIVTDIS = ON.

• Section 18.3 “How to Enable Optimization.” - added section.

• Section 18.4 “Using Optimizations.” - added section.

• Section 19.4.4 “Other Macros.” - __LINE__ macro description corrected.

• Appendix G. “Built-in Functions.” - __builtin_write_RTCC_WRLOCK does not
replace __builtin_write_RTCWEN, corrected; __builtindisi corrected to
__builtin_disi; __builtin_movsac and __builtin_sac return value cor-
rected;
 2012-2018 Microchip Technology Inc. DS50002071G-page 376

MPLAB® XC16 C COMPILER

USER’S GUIDE

Support
INTRODUCTION

Please refer to the items discussed here for support issues.

• myMicrochip Personalized Notification Service

• The Microchip Web Site

• Microchip Forums

• Customer Support

• Contact Microchip Technology

myMICROCHIP PERSONALIZED NOTIFICATION SERVICE

myMicrochip: http://www.microchip.com/pcn

Microchip’s personal notification service helps keep customers current on their
Microchip products of interest. Subscribers will receive e-mail notification whenever
there are changes, updates, revisions or errata related to a specified product family or
development tool.

Please visit myMicrochip to begin the registration process and select your preferences
to receive personalized notifications. A FAQ and registration details are available on
the page, which can be opened by selecting the link above.

When you are selecting your preferences, choosing “Development Systems” will pop-
ulate the list with available development tools. The main categories of tools are listed
below:

• Compilers – The latest information on Microchip C compilers, assemblers, linkers
and other language tools. These include all MPLAB C compilers; all MPLAB
assemblers (including MPASM™ assembler); all MPLAB linkers (including
MPLINK™ object linker); and all MPLAB librarians (including MPLIB™ object
librarian).

• Emulators – The latest information on Microchip in-circuit emulators. This
includes the MPLAB REAL ICE™ in-circuit emulator.

• In-Circuit Debuggers – The latest information on Microchip in-circuit debuggers.
These include the PICkit™ 2, PICkit 3 and MPLAB ICD 3 in-circuit debuggers.

• MPLAB® IDE – The latest information on Microchip MPLAB IDE, the Windows®
Integrated Development Environment for development systems tools. This list is
focused on the MPLAB IDE, MPLAB IDE Project Manager, MPLAB Editor and
MPLAB SIM simulator, as well as general editing and debugging features.

• Programmers – The latest information on Microchip programmers. These include
the device (production) programmers MPLAB REAL ICE in-circuit emulator,
MPLAB ICD 3 in-circuit debugger, MPLAB PM3 and development (nonproduction)
programmers PICkit 2 and 3.

• Starter/Demo Boards – These include MPLAB Starter Kit boards, PICDEM demo
boards, and various other evaluation boards.
 2012-2018 Microchip Technology Inc. DS50002071G-page 377

MPLAB® XC16 C Compiler User’s Guide
THE MICROCHIP WEB SITE

Web Site: http://www.microchip.com

Microchip provides online support via our web site. This web site is used as a means
to make files and information easily available to customers. Accessible by using your
favorite Internet browser, the web site contains the following information:

• Product Support – Data sheets and errata, application notes and sample
programs, design resources, user’s guides and hardware support documents,
latest software releases and archived software

• General Technical Support – Frequently Asked Questions (FAQs), technical
support requests, online discussion groups, Microchip consultant program
member listing

• Business of Microchip – Product selector and ordering guides, latest Microchip
press releases, listing of seminars and events, listings of Microchip sales offices,
distributors and factory representatives

MICROCHIP FORUMS

Forums: http://www.microchip.com/forums

Microchip provides additional online support via our web forums. Currently available
forums are:

• Development Tools

• 8-bit PIC MCUs

• 16-bit PIC MCUs

• 32-bit PIC MCUs

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributor or Representative

• Local Sales Office

• Field Application Engineer (FAE)

• Technical Support

Customers should contact their distributor, representative or field application engineer
(FAE) for support. Local sales offices are also available to help customers. A listing of
sales offices and locations is included in the back of this document. See our web site
for a complete, up-to-date listing of sales offices.

Technical Support: http://support.microchip.com

Documentation errors or comments may be emailed to docerrors@microchip.com.
DS50002071G-page 378 2012-2018 Microchip Technology Inc.

Support
CONTACT MICROCHIP TECHNOLOGY

You may call or fax Microchip Corporate offices at the numbers below:

Voice: (480) 792-7200

Fax: (480) 792-7277
 2012-2018 Microchip Technology Inc. DS50002071G-page 379

MPLAB® XC16 C Compiler User’s Guide
NOTES:
DS50002071G-page 380 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER

USER’S GUIDE

Glossary
A
Absolute Section

A GCC compiler section with a fixed (absolute) address that cannot be changed by the
linker.

Absolute Variable/Function

A variable or function placed at an absolute address using the OCG compiler’s @
address syntax.

Access Memory

PIC18 Only – Special registers on PIC18 devices that allow access regardless of the
setting of the Bank Select Register (BSR).

Access Entry Points

Access entry points provide a way to transfer control across segments to a function
which may not be defined at link time. They support the separate linking of boot and
secure application segments.

Address

Value that identifies a location in memory.

Alphabetic Character

Alphabetic characters are those characters that are letters of the Roman alphabet
(a, b, …, z, A, B, …, Z).

Alphanumeric

Alphanumeric characters are comprised of alphabetic characters and decimal digits
(0,1, …, 9).

ANDed Breakpoints

Set up an ANDed condition for breaking, i.e., breakpoint 1 AND breakpoint 2 must
occur at the same time before a program halt. This can only be accomplished if a data
breakpoint and a program memory breakpoint occur at the same time.

Anonymous Structure

16-bit C Compiler – An unnamed structure.

PIC18 C Compiler – An unnamed structure that is a member of a C union. The
members of an anonymous structure may be accessed as if they were members of the
enclosing union. For example, in the following code, hi and lo are members of an
anonymous structure inside the union caster.

union castaway
 int intval;
 struct {
 char lo; //accessible as caster.lo
 char hi; //accessible as caster.hi
 };
} caster;
 2012-2018 Microchip Technology Inc. DS50002071G-page 381

MPLAB® XC16 C Compiler User’s Guide
ANSI

American National Standards Institute is an organization responsible for formulating
and approving standards in the United States.

Application

A set of software and hardware that may be controlled by a PIC® microcontroller.

Archive/Archiver

An archive/library is a collection of relocatable object modules. It is created by
assembling multiple source files to object files, and then using the archiver/librarian to
combine the object files into one archive/library file. An archive/library can be linked
with object modules and other archives/libraries to create executable code.

ASCII

American Standard Code for Information Interchange is a character set encoding that
uses 7 binary digits to represent each character. It includes upper and lower case
letters, digits, symbols and control characters.

Assembly/Assembler

Assembly is a programming language that describes binary machine code in a
symbolic form. An assembler is a language tool that translates assembly language
source code into machine code.

Assigned Section

A GCC compiler section which has been assigned to a target memory block in the linker
command file.

Asynchronously

Multiple events that do not occur at the same time. This is generally used to refer to
interrupts that may occur at any time during processor execution.

Asynchronous Stimulus

Data generated to simulate external inputs to a simulator device.

Attribute

GCC Characteristics of variables or functions in a C program which are used to
describe machine-specific properties.

Attribute, Section

GCC Characteristics of sections, such as “executable”, “readonly”, or “data” that can
be specified as flags in the assembler .section directive.

B
Binary

The base two numbering system that uses the digits 0-1. The rightmost digit counts
ones, the next counts multiples of 2, then 22 = 4, etc.

Bookmarks

Use bookmarks to easily locate specific lines in a file.

Select Toggle Bookmarks on the Editor toolbar to add/remove bookmarks. Click other
icons on this toolbar to move to the next or previous bookmark.

Breakpoint

Hardware Breakpoint: An event whose execution will cause a halt.

Software Breakpoint: An address where execution of the firmware will halt. Usually
achieved by a special break instruction.
DS50002071G-page 382 2012-2018 Microchip Technology Inc.

Glossary
Build

Compile and link all the source files for an application.

C
C\C++

C is a general-purpose programming language which features economy of expression,
modern control flow and data structures, and a rich set of operators. C++ is the
object-oriented version of C.

Calibration Memory

A special function register or registers used to hold values for calibration of a PIC
microcontroller on-board RC oscillator or other device peripherals.

Central Processing Unit

The part of a device that is responsible for fetching the correct instruction for execution,
decoding that instruction, and then executing that instruction. When necessary, it works
in conjunction with the arithmetic logic unit (ALU) to complete the execution of the
instruction. It controls the program memory address bus, the data memory address
bus, and accesses to the stack.

Clean

Clean removes all intermediary project files, such as object, hex and debug files, for
the active project. These files are recreated from other files when a project is built.

COFF

Common Object File Format. An object file of this format contains machine code,
debugging and other information.

Command Line Interface

A means of communication between a program and its user based solely on textual
input and output.

Compiled Stack

A region of memory managed by the compiler in which variables are statically allocated
space. It replaces a software or hardware stack when such mechanisms cannot be
efficiently implemented on the target device.

Compiler

A program that translates a source file written in a high-level language into machine
code.

Conditional Assembly

Assembly language code that is included or omitted based on the assembly-time value
of a specified expression.

Conditional Compilation

The act of compiling a program fragment only if a certain constant expression, specified
by a preprocessor directive, is true.

Configuration Bits

Special-purpose bits programmed to set PIC MCU and dsPIC DSC modes of operation.
A Configuration bit may or may not be preprogrammed.

Control Directives

Directives in assembly language code that cause code to be included or omitted based
on the assembly-time value of a specified expression.

CPU

See Central Processing Unit.
 2012-2018 Microchip Technology Inc. DS50002071G-page 383

MPLAB® XC16 C Compiler User’s Guide
Cross Reference File

A file that references a table of symbols and a list of files that references the symbol. If
the symbol is defined, the first file listed is the location of the definition. The remaining
files contain references to the symbol.

D
Data Directives

Data directives are those that control the assembler’s allocation of program or data
memory and provide a way to refer to data items symbolically; that is, by meaningful
names.

Data Memory

On Microchip MCU and DSC devices, data memory (RAM) is comprised of General
Purpose Registers (GPRs) and Special Function Registers (SFRs). Some devices also
have EEPROM data memory.

Data Monitor and Control Interface (DMCI)

The Data Monitor and Control Interface, or DMCI, is a tool in MPLAB X IDE. The
interface provides dynamic input control of application variables in projects.
Application-generated data can be viewed graphically using any of 4
dynamically-assignable graph windows.

Debug/Debugger

See ICE/ICD.

Debugging Information

Compiler and assembler options that, when selected, provide varying degrees of
information used to debug application code. See compiler or assembler documentation
for details on selecting debug options.

Deprecated Features

Features that are still supported for legacy reasons, but will eventually be phased out
and no longer used.

Device Programmer

A tool used to program electrically programmable semiconductor devices such as
microcontrollers.

Digital Signal Controller

A A digital signal controller (DSC) is a microcontroller device with digital signal
processing capability, i.e., Microchip dsPIC DSC devices.

Digital Signal Processing\Digital Signal Processor

Digital signal processing (DSP) is the computer manipulation of digital signals,
commonly analog signals (sound or image) which have been converted to digital form
(sampled). A digital signal processor is a microprocessor that is designed for use in
digital signal processing.

Directives

Statements in source code that provide control of the language tool’s operation.

Download

Download is the process of sending data from a host to another device, such as an
emulator, programmer or target board.

DWARF

Debug With Arbitrary Record Format. DWARF is a debug information format for ELF
files.
DS50002071G-page 384 2012-2018 Microchip Technology Inc.

Glossary
E
EEPROM

Electrically Erasable Programmable Read Only Memory. A special type of PROM that
can be erased electrically. Data is written or erased one byte at a time. EEPROM
retains its contents even when power is turned off.

ELF

Executable and Linking Format. An object file of this format contains machine code.
Debugging and other information is specified in with DWARF. ELF/DWARF provide
better debugging of optimized code than COFF.

Emulation/Emulator

See ICE/ICD.

Endianness

The ordering of bytes in a multi-byte object.

Environment

MPLAB PM3 – A folder containing files on how to program a device. This folder can be
transferred to a SD/MMC card.

Epilogue

A portion of compiler-generated code that is responsible for deallocating stack space,
restoring registers and performing any other machine-specific requirement specified in
the runtime model. This code executes after any user code for a given function,
immediately prior to the function return.

EPROM

Erasable Programmable Read Only Memory. A programmable read-only memory that
can be erased usually by exposure to ultraviolet radiation.

Error/Error File

An error reports a problem that makes it impossible to continue processing your
program. When possible, an error identifies the source file name and line number
where the problem is apparent. An error file contains error messages and diagnostics
generated by a language tool.

Event

A description of a bus cycle which may include address, data, pass count, external
input, cycle type (fetch, R/W), and time stamp. Events are used to describe triggers,
breakpoints and interrupts.

Executable Code

Software that is ready to be loaded for execution.

Export

Send data out of the MPLAB IDE/MPLAB X IDE in a standardized format.

Expressions

Combinations of constants and/or symbols separated by arithmetic or logical
operators.

Extended Microcontroller Mode

In extended microcontroller mode, on-chip program memory as well as external
memory is available. Execution automatically switches to external if the program
memory address is greater than the internal memory space of the PIC18 device.
 2012-2018 Microchip Technology Inc. DS50002071G-page 385

MPLAB® XC16 C Compiler User’s Guide
Extended Mode (PIC18 MCUs)

In Extended mode, the compiler will utilize the extended instructions (i.e., ADDFSR,
ADDULNK, CALLW, MOVSF, MOVSS, PUSHL, SUBFSR and SUBULNK) and the indexed
with literal offset addressing.

External Label

A label that has external linkage.

External Linkage

A function or variable has external linkage if it can be referenced from outside the
module in which it is defined.

External Symbol

A symbol for an identifier which has external linkage. This may be a reference or a
definition.

External Symbol Resolution

A process performed by the linker in which external symbol definitions from all input
modules are collected in an attempt to resolve all external symbol references. Any
external symbol references which do not have a corresponding definition cause a linker
error to be reported.

External Input Line

An external input signal logic probe line (TRIGIN) for setting an event based upon
external signals.

External RAM

Off-chip Read/Write memory.

F
Fatal Error

An error that will halt compilation immediately. No further messages will be produced.

File Registers

On-chip data memory, including General Purpose Registers (GPRs) and Special
Function Registers (SFRs).

Filter

Determine by selection what data is included/excluded in a trace display or data file.

Fixup

The process of replacing object file symbolic references with absolute addresses after
relocation by the linker.

Flash

A type of EEPROM where data is written or erased in blocks instead of bytes.

FNOP

Forced No Operation. A forced NOP cycle is the second cycle of a two-cycle
instruction. Since the PIC microcontroller architecture is pipelined, it prefetches the
next instruction in the physical address space while it is executing the current
instruction. However, if the current instruction changes the program counter, this
prefetched instruction is explicitly ignored, causing a forced NOP cycle.

Frame Pointer

A pointer that references the location on the stack that separates the stack-based
arguments from the stack-based local variables. Provides a convenient base from
which to access local variables and other values for the current function.
DS50002071G-page 386 2012-2018 Microchip Technology Inc.

Glossary
Free-Standing

An implementation that accepts any strictly conforming program that does not use
complex types and in which the use of the features specified in the library clause (ANSI
‘89 standard clause 7) is confined to the contents of the standard headers <float.h>,
<iso646.h>, <limits.h>, <stdarg.h>, <stdbool.h>, <stddef.h> and
<stdint.h>.

G
GPR

General Purpose Register. The portion of device data memory (RAM) available for
general use.

H
Halt

A stop of program execution. Executing Halt is the same as stopping at a breakpoint.

Heap

An area of memory used for dynamic memory allocation where blocks of memory are
allocated and freed in an arbitrary order determined at runtime.

Hex Code\Hex File

Hex code is executable instructions stored in a hexadecimal format code. Hex code is
contained in a hex file.

Hexadecimal

The base 16 numbering system that uses the digits 0-9 plus the letters A-F (or a-f). The
digits A-F represent hexadecimal digits with values of (decimal) 10 to 15. The rightmost
digit counts ones, the next counts multiples of 16, then 162 = 256, etc.

High Level Language

A language for writing programs that is further removed from the processor than
assembly.

I
ICE/ICD

In-Circuit Emulator/In-Circuit Debugger: A hardware tool that debugs and programs a
target device. An emulator has more features than an debugger, such as trace.

In-Circuit Emulation/In-Circuit Debug: The act of emulating or debugging with an
in-circuit emulator or debugger.

-ICE/-ICD: A device (MCU or DSC) with on-board in-circuit emulation or debug circuitry.
This device is always mounted on a header board and used to debug with an in-circuit
emulator or debugger.

ICSP

In-Circuit Serial Programming. A method of programming Microchip embedded
devices using serial communication and a minimum number of device pins.

IDE

Integrated Development Environment, as in MPLAB IDE/MPLAB X IDE.

Identifier

A function or variable name.

IEEE

Institute of Electrical and Electronics Engineers.
 2012-2018 Microchip Technology Inc. DS50002071G-page 387

MPLAB® XC16 C Compiler User’s Guide
Import

Bring data into the MPLAB IDE/MPLAB X IDE from an outside source, such as from a
hex file.

Initialized Data

Data which is defined with an initial value. In C,

int myVar=5;

defines a variable which will reside in an initialized data section.

Instruction Set

The collection of machine language instructions that a particular processor
understands.

Instructions

A sequence of bits that tells a central processing unit to perform a particular operation
and can contain data to be used in the operation.

Internal Linkage

A function or variable has internal linkage if it can not be accessed from outside the
module in which it is defined.

International Organization for Standardization

An organization that sets standards in many businesses and technologies, including
computing and communications. Also known as ISO.

Interrupt

A signal to the CPU that suspends the execution of a running application and transfers
control to an Interrupt Service Routine (ISR) so that the event may be processed. Upon
completion of the ISR, normal execution of the application resumes.

Interrupt Handler

A routine that processes special code when an interrupt occurs.

Interrupt Service Request (IRQ)

An event which causes the processor to temporarily suspend normal instruction
execution and to start executing an interrupt handler routine. Some processors have
several interrupt request events allowing different priority interrupts.

Interrupt Service Routine (ISR)

Language tools – A function that handles an interrupt.

MPLAB IDE/MPLAB X IDE – User-generated code that is entered when an interrupt
occurs. The location of the code in program memory will usually depend on the type of
interrupt that has occurred.

Interrupt Vector

Address of an interrupt service routine or interrupt handler.

L
L-value

An expression that refers to an object that can be examined and/or modified. An l-value
expression is used on the left-hand side of an assignment.

Latency

The time between an event and its response.

Library/Librarian

See Archive/Archiver.
DS50002071G-page 388 2012-2018 Microchip Technology Inc.

Glossary
Linker

A language tool that combines object files and libraries to create executable code,
resolving references from one module to another.

Linker Script Files

Linker script files are the command files of a linker. They define linker options and
describe available memory on the target platform.

Listing Directives

Listing directives are those directives that control the assembler listing file format. They
allow the specification of titles, pagination and other listing control.

Listing File

A listing file is an ASCII text file that shows the machine code generated for each C
source statement, assembly instruction, assembler directive, or macro encountered in
a source file.

Little Endian

A data ordering scheme for multibyte data whereby the least significant byte is stored
at the lower addresses.

Local Label

A local label is one that is defined inside a macro with the LOCAL directive. These
labels are particular to a given instance of a macro’s instantiation. In other words, the
symbols and labels that are declared as local are no longer accessible after the ENDM
macro is encountered.

Logic Probes

Up to 14 logic probes can be connected to some Microchip emulators. The logic probes
provide external trace inputs, trigger output signal, +5V, and a common ground.

Loop-Back Test Board

Used to test the functionality of the MPLAB REAL ICE in-circuit emulator.

LVDS

Low Voltage Differential Signaling. A low noise, low-power, low amplitude method for
high-speed (gigabits per second) data transmission over copper wire.

With standard I/O signaling, data storage is contingent upon the actual voltage level.
Voltage level can be affected by wire length (longer wires increase resistance, which
lowers voltage). But with LVDS, data storage is distinguished only by positive and
negative voltage values, not the voltage level. Therefore, data can travel over greater
lengths of wire while maintaining a clear and consistent data stream.

Source: http://www.webopedia.com/TERM/L/LVDS.html

M
Machine Code

The representation of a computer program that is actually read and interpreted by the
processor. A program in binary machine code consists of a sequence of machine
instructions (possibly interspersed with data). The collection of all possible instructions
for a particular processor is known as its “instruction set”.

Machine Language

A set of instructions for a specific central processing unit, designed to be usable by a
processor without being translated.
 2012-2018 Microchip Technology Inc. DS50002071G-page 389

http://www.webopedia.com/TERM/L/LVDS.html

MPLAB® XC16 C Compiler User’s Guide
Macro

Macro instruction. An instruction that represents a sequence of instructions in
abbreviated form.

Macro Directives

Directives that control the execution and data allocation within macro body definitions.

Makefile

Export to a file the instructions to Make the project. Use this file to Make your project
outside of MPLAB IDE/MPLAB X IDE, i.e., with a make.

Make Project

A command that rebuilds an application, recompiling only those source files that have
changed since the last complete compilation.

MCU

Microcontroller Unit. An abbreviation for microcontroller. Also uC.

Memory Model

For C compilers, a representation of the memory available to the application. For the
PIC18 C compiler, a description that specifies the size of pointers that point to program
memory.

Message

Text displayed to alert you to potential problems in language tool operation. A message
will not stop operation.

Microcontroller

A highly integrated chip that contains a CPU, RAM, program memory, I/O ports and
timers.

Microcontroller Mode

One of the possible program memory configurations of PIC18 microcontrollers. In
microcontroller mode, only internal execution is allowed. Thus, only the on-chip
program memory is available in microcontroller mode.

Microprocessor Mode

One of the possible program memory configurations of PIC18 microcontrollers. In
microprocessor mode, the on-chip program memory is not used. The entire program
memory is mapped externally.

Mnemonics

Text instructions that can be translated directly into machine code. Also referred to as
opcodes.

Module

The preprocessed output of a source file after preprocessor directives have been
executed. Also known as a translation unit.

MPASM™ Assembler

Microchip Technology’s relocatable macro assembler for PIC microcontroller devices,
KeeLoq® devices and Microchip memory devices.

MPLAB Language Tool for Device

Microchip’s C compilers, assemblers and linkers for specified devices. Select the type
of language tool based on the device you will be using for your application, e.g., if you
will be creating C code on a PIC18 MCU, select the MPLAB C Compiler for PIC18
MCUs.
DS50002071G-page 390 2012-2018 Microchip Technology Inc.

Glossary
MPLAB ICD

Microchip in-circuit debugger that works with MPLAB IDE/MPLAB X IDE. See ICE/ICD.

MPLAB IDE/MPLAB X IDE

Microchip’s Integrated Development Environment. MPLAB IDE/MPLAB X IDE comes
with an editor, project manager and simulator.

MPLAB PM3

A device programmer from Microchip. Programs PIC18 microcontrollers and dsPIC
digital signal controllers. Can be used with MPLAB IDE/MPLAB X IDE or stand-alone.
Replaces PRO MATE II.

MPLAB Starter Kit for Device

Microchip’s starter kits contains everything needed to begin exploring the specified
device. View a working application and then debug and program you own changes.

MPLAB REAL ICE™ In-Circuit Emulator

Microchip’s next-generation in-circuit emulator that works with MPLAB IDE/MPLAB X
IDE. See ICE/ICD.

MPLAB SIM

Microchip’s simulator that works with MPLAB IDE/MPLAB X IDE in support of PIC MCU
and dsPIC DSC devices.

MPLIB™ Object Librarian

Microchip’s librarian that can work with MPLAB IDE/MPLAB X IDE. MPLIB librarian is
an object librarian for use with COFF object modules created using either MPASM
assembler (mpasm or mpasmwin v2.0) or MPLAB C18 C Compiler.

MPLINK™ Object Linker

MPLINK linker is an object linker for the Microchip MPASM assembler and the
Microchip C18 C compiler. MPLINK linker also may be used with the Microchip MPLIB
librarian. MPLINK linker is designed to be used with MPLAB IDE/MPLAB X IDE, though
it does not have to be.

MRU

Most Recently Used. Refers to files and windows available to be selected from MPLAB
IDE/MPLAB X IDE main pull down menus.

N
Native Data Size

For Native trace, the size of the variable used in a Watches window must be of the
same size as the selected device’s data memory: bytes for PIC18 devices and words
for 16-bit devices.

Nesting Depth

The maximum level to which macros can include other macros.

Node

MPLAB IDE/MPLAB X IDE project component.

Non-Extended Mode (PIC18 MCUs)

In Non-Extended mode, the compiler will not utilize the extended instructions nor the
indexed with literal offset addressing.

Non Real Time

Refers to the processor at a breakpoint or executing single-step instructions or MPLAB
IDE/MPLAB X IDE being run in simulator mode.
 2012-2018 Microchip Technology Inc. DS50002071G-page 391

MPLAB® XC16 C Compiler User’s Guide
Non-Volatile Storage

A storage device whose contents are preserved when its power is off.

NOP

No Operation. An instruction that has no effect when executed except to advance the
program counter.

O
Object Code/Object File

Object code is the machine code generated by an assembler or compiler. An object file
is a file containing machine code and possibly debug information. It may be
immediately executable or it may be relocatable, requiring linking with other object files,
e.g., libraries, to produce a complete executable program.

Object File Directives

Directives that are used only when creating an object file.

Octal

The base 8 number system that only uses the digits 0-7. The rightmost digit counts
ones, the next digit counts multiples of 8, then 82 = 64, etc.

Off-Chip Memory

Off-chip memory refers to the memory selection option for the PIC18 device where
memory may reside on the target board, or where all program memory may be supplied
by the emulator. The Memory tab accessed from Options>Development Mode
provides the Off-Chip Memory selection dialog box.

Opcodes

Operational Codes. See Mnemonics.

Operators

Symbols, like the plus sign ‘+’ and the minus sign ‘-’, that are used when forming
well-defined expressions. Each operator has an assigned precedence that is used to
determine order of evaluation.

OTP

One Time Programmable. EPROM devices that are not in windowed packages. Since
EPROM needs ultraviolet light to erase its memory, only windowed devices are
erasable.

P
Pass Counter

A counter that decrements each time an event (such as the execution of an instruction
at a particular address) occurs. When the pass count value reaches zero, the event is
satisfied. You can assign the Pass Counter to break and trace logic, and to any
sequential event in the complex trigger dialog.

PC

Personal Computer or Program Counter.

PC Host

Any PC running a supported Windows operating system.

Persistent Data

Data that is never cleared or initialized. Its intended use is so that an application can
preserve data across a device Reset.
DS50002071G-page 392 2012-2018 Microchip Technology Inc.

Glossary
Phantom Byte

An unimplemented byte in the dsPIC architecture that is used when treating the 24-bit
instruction word as if it were a 32-bit instruction word. Phantom bytes appear in dsPIC
hex files.

PIC MCUs

PIC microcontrollers (MCUs) refers to all Microchip microcontroller families.

PICkit 2 and 3

Microchip’s developmental device programmers with debug capability through Debug
Express. See the Readme files for each tool to see which devices are supported.

Plug-ins

The MPLAB IDE/MPLAB X IDE has both built-in components and plug-in modules to
configure the system for a variety of software and hardware tools. Several plug-in tools
may be found under the Tools menu.

Pod

The enclosure for an in-circuit emulator or debugger. Other names are “Puck”, if the
enclosure is round, and “Probe”, not be confused with logic probes.

Power-on-Reset Emulation

A software randomization process that writes random values in data RAM areas to
simulate uninitialized values in RAM upon initial power application.

Pragma

A directive that has meaning to a specific compiler. Often a pragma is used to convey
implementation-defined information to the compiler.

Precedence

Rules that define the order of evaluation in expressions.

Production Programmer

A production programmer is a programming tool that has resources designed in to
program devices rapidly. It has the capability to program at various voltage levels and
completely adheres to the programming specification. Programming a device as fast
as possible is of prime importance in a production environment where time is of the
essence as the application circuit moves through the assembly line.

Profile

For MPLAB SIM simulator, a summary listing of executed stimulus by register.

Program Counter

The location that contains the address of the instruction that is currently executing.

Program Counter Unit

16-bit assembler – A conceptual representation of the layout of program memory. The
program counter increments by 2 for each instruction word. In an executable section,
2 program counter units are equivalent to 3 bytes. In a read-only section, 2 program
counter units are equivalent to 2 bytes.

Program Memory

MPLAB IDE/MPLAB X IDE – The memory area in a device where instructions are
stored. Also, the memory in the emulator or simulator containing the downloaded target
application firmware.

16-bit assembler/compiler – The memory area in a device where instructions are
stored.
 2012-2018 Microchip Technology Inc. DS50002071G-page 393

MPLAB® XC16 C Compiler User’s Guide
Project

A project contains the files needed to build an application (source code, linker script
files, etc.) along with their associations to various build tools and build options.

Prologue

A portion of compiler-generated code that is responsible for allocating stack space,
preserving registers and performing any other machine-specific requirement specified
in the runtime model. This code executes before any user code for a given function.

Prototype System

A term referring to a user's target application, or target board.

Psect

The OCG equivalent of a GCC section, short for program section. A block of code or
data which is treated as a whole by the linker.

PWM Signals

Pulse Width Modulation Signals. Certain PIC MCU devices have a PWM peripheral.

Q
Qualifier

An address or an address range used by the Pass Counter or as an event before
another operation in a complex trigger.

R
Radix

The number base, hex, or decimal, used in specifying an address.

RAM

Random Access Memory (Data Memory). Memory in which information can be
accessed in any order.

Raw Data

The binary representation of code or data associated with a section.

Read Only Memory

Memory hardware that allows fast access to permanently stored data but prevents
addition to or modification of the data.

Real Time

When an in-circuit emulator or debugger is released from the halt state, the processor
runs in Real Time mode and behaves exactly as the normal chip would behave. In Real
Time mode, the real time trace buffer of an emulator is enabled and constantly captures
all selected cycles, and all break logic is enabled. In an in-circuit emulator or debugger,
the processor executes in real time until a valid breakpoint causes a halt, or until the
user halts the execution.

In the simulator, real time simply means execution of the microcontroller instructions as
fast as they can be simulated by the host CPU.

Recursive Calls

A function that calls itself, either directly or indirectly.

Recursion

The concept that a function or macro, having been defined, can call itself. Great care
should be taken when writing recursive macros; it is easy to get caught in an infinite
loop where there will be no exit from the recursion.
DS50002071G-page 394 2012-2018 Microchip Technology Inc.

Glossary
Reentrant

A function that may have multiple, simultaneously active instances. This may happen
due to either direct or indirect recursion or through execution during interrupt
processing.

Relaxation

The process of converting an instruction to an identical, but smaller instruction. This is
useful for saving on code size. MPLAB XC16 currently knows how to relax a CALL
instruction into an RCALL instruction. This is done when the symbol that is being called
is within +/- 32k instruction words from the current instruction.

Relocatable

An object whose address has not been assigned to a fixed location in memory.

Relocatable Section

16-bit assembler – A section whose address is not fixed (absolute). The linker assigns
addresses to relocatable sections through a process called relocation.

Relocation

A process performed by the linker in which absolute addresses are assigned to
relocatable sections and all symbols in the relocatable sections are updated to their
new addresses.

ROM

Read Only Memory (Program Memory). Memory that cannot be modified.

Run

The command that releases the emulator from halt, allowing it to run the application
code and change or respond to I/O in real time.

Run-time Model

Describes the use of target architecture resources.

Runtime Watch

A Watches window where the variables change in as the application is run. See
individual tool documentation to determine how to set up a runtime watch. Not all tools
support runtime watches.

S
Scenario

For MPLAB SIM simulator, a particular setup for stimulus control.

Section

The GCC equivalent of an OCG psect. A block of code or data which is treated as a
whole by the linker.

Section Attribute

A GCC characteristic ascribed to a section (e.g., an access section).

Sequenced Breakpoints

Breakpoints that occur in a sequence. Sequence execution of breakpoints is
bottom-up; the last breakpoint in the sequence occurs first.

Serialized Quick Turn Programming

Serialization allows you to program a serial number into each microcontroller device
that the Device Programmer programs. This number can be used as an entry code,
password or ID number.
 2012-2018 Microchip Technology Inc. DS50002071G-page 395

MPLAB® XC16 C Compiler User’s Guide
Shell

The MPASM assembler shell is a prompted input interface to the macro assembler.
There are two MPASM assembler shells: one for the DOS version and one for the
Windows operating system version.

Simulator

A software program that models the operation of devices.

Single Step

This command steps though code, one instruction at a time. After each instruction,
MPLAB IDE/MPLAB X IDE updates register windows, watch variables, and status
displays so you can analyze and debug instruction execution. You can also single step
C compiler source code, but instead of executing single instructions, MPLAB
IDE/MPLAB X IDE will execute all assembly level instructions generated by the line of
the high level C statement.

Skew

The information associated with the execution of an instruction appears on the
processor bus at different times. For example, the executed opcodes appears on the
bus as a fetch during the execution of the previous instruction, the source data address
and value and the destination data address appear when the opcodes is actually
executed, and the destination data value appears when the next instruction is
executed. The trace buffer captures the information that is on the bus at one instance.
Therefore, one trace buffer entry will contain execution information for three
instructions. The number of captured cycles from one piece of information to another
for a single instruction execution is referred to as the skew.

Skid

When a hardware breakpoint is used to halt the processor, one or more additional
instructions may be executed before the processor halts. The number of extra
instructions executed after the intended breakpoint is referred to as the skid.

Source Code

The form in which a computer program is written by the programmer. Source code is
written in a formal programming language which can be translated into machine code
or executed by an interpreter.

Source File

An ASCII text file containing source code.

Special Function Registers (SFRs)

The portion of data memory (RAM) dedicated to registers that control I/O processor
functions, I/O status, timers or other modes or peripherals.

SQTP

See Serialized Quick Turn Programming.

Stack, Hardware

Locations in PIC microcontroller where the return address is stored when a function call
is made.

Stack, Software

Memory used by an application for storing return addresses, function parameters, and
local variables. This memory is dynamically allocated at runtime by instructions in the
program. It allows for reentrant function calls.

Stack, Compiled
DS50002071G-page 396 2012-2018 Microchip Technology Inc.

Glossary
A region of memory managed and allocated by the compiler in which variables are
statically assigned space. It replaces a software stack when such mechanisms cannot
be efficiently implemented on the target device. It precludes reentrancy.

Static RAM or SRAM

Static Random Access Memory. Program memory you can read/write on the target
board that does not need refreshing frequently.

Status Bar

The Status Bar is located on the bottom of the MPLAB IDE/MPLAB X IDE window and
indicates such current information as cursor position, development mode and device,
and active tool bar.

Step Into

This command is the same as Single Step. Step Into (as opposed to Step Over) follows
a CALL instruction into a subroutine.

Step Over

Step Over allows you to debug code without stepping into subroutines. When stepping
over a CALL instruction, the next breakpoint will be set at the instruction after the CALL.
If for some reason the subroutine gets into an endless loop or does not return properly,
the next breakpoint will never be reached. The Step Over command is the same as
Single Step except for its handling of CALL instructions.

Step Out

Step Out allows you to step out of a subroutine which you are currently stepping
through. This command executes the rest of the code in the subroutine and then stops
execution at the return address to the subroutine.

Stimulus

Input to the simulator, i.e., data generated to exercise the response of simulation to
external signals. Often the data is put into the form of a list of actions in a text file.
Stimulus may be asynchronous, synchronous (pin), clocked and register.

Stopwatch

A counter for measuring execution cycles.

Storage Class

Determines the lifetime of the memory associated with the identified object.

Storage Qualifier

Indicates special properties of the objects being declared (e.g., const).

Symbol

A symbol is a general purpose mechanism for describing the various pieces which
comprise a program. These pieces include function names, variable names, section
names, file names, struct/enum/union tag names, etc. Symbols in MPLAB IDE/MPLAB
X IDE refer mainly to variable names, function names and assembly labels. The value
of a symbol after linking is its value in memory.

Symbol, Absolute

Represents an immediate value such as a definition through the assembly .equ
directive.

System Window Control

The system window control is located in the upper left corner of windows and some
dialogs. Clicking on this control usually pops up a menu that has the items “Minimize,”
“Maximize,” and “Close.”
 2012-2018 Microchip Technology Inc. DS50002071G-page 397

MPLAB® XC16 C Compiler User’s Guide
T
Target

Refers to user hardware.

Target Application

Software residing on the target board.

Target Board

The circuitry and programmable device that makes up the target application.

Target Processor

The microcontroller device on the target application board.

Template

Lines of text that you build for inserting into your files at a later time. The MPLAB Editor
stores templates in template files.

Tool Bar

A row or column of icons that you can click on to execute MPLAB IDE/MPLAB X IDE
functions.

Trace

An emulator or simulator function that logs program execution. The emulator logs
program execution into its trace buffer which is uploaded to the MPLAB IDE/MPLAB X
IDE trace window.

Trace Memory

Trace memory contained within the emulator. Trace memory is sometimes called the
trace buffer.

Trace Macro

A macro that will provide trace information from emulator data. Since this is a software
trace, the macro must be added to code, the code must be recompiled or reassembled,
and the target device must be programmed with this code before trace will work.

Trigger Output

Trigger output refers to an emulator output signal that can be generated at any address
or address range, and is independent of the trace and breakpoint settings. Any number
of trigger output points can be set.

Trigraphs

Three-character sequences, all starting with ??, that are defined by ISO C as
replacements for single characters.

U
Unassigned Section

A section which has not been assigned to a specific target memory block in the linker
command file. The linker must find a target memory block in which to allocate an
unassigned section.

Uninitialized Data

Data which is defined without an initial value. In C,

int myVar;

defines a variable which will reside in an uninitialized data section.

Upload

The Upload function transfers data from a tool, such as an emulator or programmer, to
the host PC or from the target board to the emulator.
DS50002071G-page 398 2012-2018 Microchip Technology Inc.

Glossary
USB

Universal Serial Bus. An external peripheral interface standard for communication
between a computer and external peripherals over a cable using bi-serial transmission.
USB 1.0/1.1 supports data transfer rates of 12 Mbps. Also referred to as high-speed
USB, USB 2.0 supports data rates up to 480 Mbps.

V
Vector

The memory locations that an application will jump to when either a Reset or interrupt
occurs.

Volatile

A variable qualifier which prevents the compiler applying optimizations that affect how
the variable is accessed in memory.

W
Warning

MPLAB IDE/MPLAB X IDE – An alert that is provided to warn you of a situation that
would cause physical damage to a device, software file, or equipment.

16-bit assembler/compiler – Warnings report conditions that may indicate a problem,
but do not halt processing.

Watch Variable

A variable that you may monitor during a debugging session in a Watches window.

Watches Window

Watches windows contain a list of watch variables that are updated at each breakpoint.

Watchdog Timer (WDT)

A timer on a PIC microcontroller that resets the processor after a selectable length of
time. The WDT is enabled or disabled and set up using Configuration bits.

Workbook

For MPLAB SIM stimulator, a setup for generation of SCL stimulus.
 2012-2018 Microchip Technology Inc. DS50002071G-page 399

MPLAB® XC16 C Compiler User’s Guide
NOTES:
DS50002071G-page 400 2012-2018 Microchip Technology Inc.

MPLAB® XC16 C COMPILER
USER’S GUIDE

Index
 IAR compatibility ..279–284

Symbols
__align qualifier .. 38
__bank qualifier.. 37
__builtin_ACCH.. 341
__builtin_ACCL .. 341
__builtin_ACCU.. 341
__builtin_add.. 341
__builtin_addab.. 342
__builtin_addr... 342
__builtin_addr_high.. 342
__builtin_addr_low ... 342
__builtin_btg... 343
__builtin_clr .. 343
__builtin_clr_prefect ... 344
__builtin_clrwdt .. 345
__builtin_dataflashoffset .. 345
__builtin_disable_interrupts 345
__builtin_disi .. 345
__builtin_divf .. 346
__builtin_divmodsd .. 346
__builtin_divmodud .. 346
__builtin_divsd ... 347
__builtin_divud ... 347
__builtin_dmaoffset .. 347
__builtin_dmapage... 348
__builtin_ed.. 348
__builtin_edac .. 349
__builtin_edsoffset ... 350
__builtin_edspage.. 350
__builtin_enable_interrupts 350
__builtin_fbcl .. 351
__builtin_get_isr_state ... 351
__builtin_lac ... 351
__builtin_lacd ... 352
__builtin_mac ... 352
__builtin_modsd... 353
__builtin_modud... 353
__builtin_movsac ... 354
__builtin_mpy ... 355
__builtin_mpyn... 356
__builtin_msc ... 357
__builtin_mulss .. 358
__builtin_mulsu .. 358
__builtin_mulus .. 359
__builtin_muluu .. 359
__builtin_nop.. 359
__builtin_psvoffset ... 360
__builtin_psvpage .. 360
__builtin_pwrsav .. 360

__builtin_readsfr... 361
__builtin_return_address.. 361
__builtin_sac .. 361
__builtin_sacd .. 362
__builtin_sacr ... 362
__builtin_section_begin.. 362
__builtin_section_end .. 362
__builtin_section_size .. 363
__builtin_set_isr_state ... 363
__builtin_sftac .. 363
__builtin_software_breakpoint 364
__builtin_subab .. 364
__builtin_tbladdress ... 364
__builtin_tbloffset ... 365
__builtin_tblpage .. 365
__builtin_tblrdh... 365
__builtin_tblrdl .. 366
__builtin_tblwth .. 366
__builtin_tblwtl.. 366
__builtin_write_CRYOTP 367
__builtin_write_DISICNT.. 367
__builtin_write_NVM .. 368
__builtin_write_NVM_secure 368
__builtin_write_OSCCONH.................................... 369
__builtin_write_OSCCONL 369
__builtin_write_PWMSFR 370
__builtin_write_RTCC_WRLOCK........................... 371
__builtin_write_RTCWEN 370
__deprecate qualifier.. 43
__eeprom qualifier ... 39
__far qualifier ... 34
__HAS_5VOLTS__ .. 260
__HAS_CODEGUARD__ 260
__HAS_DMA__.. 260
__HAS_DMAV2__ ... 260
__HAS_DSP__ .. 260
__HAS_EDS__ .. 260
__HAS_EEDATA__ ... 260
__HAS_PMP__ .. 260
__HAS_PMP_ENHANCED__................................ 260
__HAS_PMPV2__.. 260
__interrupt qualifier .. 40
__near qualifier .. 35
__pack qualifier .. 42
__persistent qualifier .. 36
__section qualifier .. 43
__XC16_VERSION__ .. 259
__xdata qualifier ... 37
__ydata qualifier ... 37
_Accum .. 217
 2012-2018 Microchip Technology Inc. DS50002071G-page 401

MPLAB® XC16 C Compiler User’s Guide
_delay function ... 65
_EEDATA(N) .. 176
_Fract ... 217
_XBSS(N)... 176
_XDATA(N) .. 176
_YBSS(N)... 176
_YDATA(N) .. 176
.bss... 164, 273
.c .. 77
.const.. 234
.data ... 164, 273
.gld ... 77
.s .. 77
.text ...109, 211, 213, 273
#define ... 124
#ident ... 129
#if ... 116
#include.. 124, 125
#include directive ... 97
#line.. 126
#pragma ..114, 261, 273

Numerics
0b binary radix specifier ... 153
16-Bit Specific Options... 107

A
-A.. 124
abort ... 210, 277
absolute functions .. 33
absolute variables .. 33
activation, see compiler installation & activation
address Attribute .. 160, 205
alias Attribute ... 206
aligned Attribute ... 160
Alignment ..160, 163, 217, 272
-ansi ..111, 126, 214
ANSI C Standard.. 17
ANSI C standard .. 22

conformance ... 142
implementation-defined behaviour 142

ANSI Standard Library Support................................ 18
ANSI-89 extension ... 145
Archiver .. 98
arrays

initialization ... 154
Arrays and Pointers.. 271
ASCII Character Set... 333
ASCII characters .. 146

extended ... 154
asm .. 160, 239
asm C statement .. 46
Assembler .. 98
assembly code

mixing with C... 62
writing...62–??

assembly list files ... 105
Assembly Options .. 127

-Wa ... 127
assembly source files ... 97
Assembly, Inline ... 239

Assembly, Mixing with C .. 236
Atomic Operation.. 228
attribute ...18, 159, 205, 261
Attribute, Function

address ... 205
alias... 206
boot ... 206
const.. 207
context... 208
deprecated .. 208
far .. 208
format .. 208
format_arg... 208
interrupt ... 209, 223, 226
keep .. 209
naked .. 209
near ... 209
no_instrument_function................................... 209
noload ... 209
noreturn... 115, 210
optimize... 210
round ... 210
save(list) .. 210
section... 211, 213, 338
secure ... 211
shadow.. 212, 223
shared ... 212
unsupported .. 212
unused .. 212
user_init... 212
weak.. 212

Attribute, Variable... 159
address ... 160
aligned... 160
boot ... 160
deprecated .. 161
eds .. 161
far .. 161, 199, 216
fillupper.. 161
mode ... 161
near ... 162, 199, 216
noload ... 162
packed... 162
persistent... 163
preserved .. 163
priority ... 163, 210
reverse .. 163
section... 164
secure ... 164
sfr .. 164
shared ... 164
space... 164
transparent_union ... 166
unordered.. 166
unsupported .. 166
unused .. 166
update ... 166
weak.. 166

auto variables ... 174, 177
memory allocation177–??
DS50002071G-page 402 2012-2018 Microchip Technology Inc.

Index
auto_psv default memory spaces 264
auto_psv Space ... 107
auto_psv, space attribute....................................... 165
Automatic Variable ..113, 178
-aux-info ... 111

B
-B ... 96
binary constants

C code .. 153
bit-fields............................... 30, 31, 111, 150, 230, 272
bitwise complement operator 201
boot Attribute...160, 206
Built-In Functions

__builtin_ACCH .. 341
__builtin_ACCL... 341
__builtin_ACCU .. 341
__builtin_add .. 341
__builtin_addab .. 342
__builtin_addr ... 342
__builtin_addr_high .. 342
__builtin_addr_low.. 342
__builtin_btg ... 343
__builtin_clr... 343
__builtin_clr_prefect.. 344
__builtin_clrwdt ... 345
__builtin_dataflashoffset 345
__builtin_disable_interrupts 345
__builtin_disi ... 345
__builtin_divf ... 346
__builtin_divmodsd ... 346
__builtin_divmodud... 346
__builtin_divsd .. 347
__builtin_divud.. 347
__builtin_dmaoffset... 347
__builtin_dmapage ... 348
__builtin_ed .. 348
__builtin_edac... 349
__builtin_edsoffset .. 350
__builtin_edspage... 350
__builtin_enable_interrupts............................. 350
__builtin_fbcl ... 351
__builtin_get_isr_state.................................... 351
__builtin_lac.. 351
__builtin_lacd.. 352
__builtin_mac.. 352
__builtin_modsd.. 353
__builtin_modud ... 353
__builtin_movsac .. 354
__builtin_mpy.. 355
__builtin_mpyn.. 356
__builtin_msc.. 357
__builtin_mulss ... 358
__builtin_mulsu... 358
__builtin_mulus... 359
__builtin_muluu... 359
__builtin_nop .. 359
__builtin_psvoffset .. 360
__builtin_psvpage... 360
__builtin_pwrsav ... 360
__builtin_readsfr ... 361

__builtin_return_address 361
__builtin_sac ... 361
__builtin_sacd ... 362
__builtin_sacr.. 362
__builtin_section_begin 362
__builtin_section_end 362
__builtin_section_size..................................... 363
__builtin_set_isr_state 363
__builtin_sftac ... 363
__builtin_software_breakpoint 364
__builtin_subab... 364
__builtin_tbladdress .. 364
__builtin_tbloffset .. 365
__builtin_tblpage... 365
__builtin_tblrdh.. 365
__builtin_tblrdl ... 366
__builtin_tblwth ... 366
__builtin_tblwtl .. 366
__builtin_write_CRYOTP 367
__builtin_write_DISICNT................................. 367
__builtin_write_NVM 368
__builtin_write_NVM_secure 368
__builtin_write_OSCCONH............................. 369
__builtin_write_OSCCONL 369
__builtin_write_PWMSFR 370
__builtin_write_RTCC_WRLOCK 371
__builtin_write_RTCWEN 370

C
-C ... 124
-c .. 110, 127
C Dialect Control Options....................................... 111

-ansi .. 111
-aux-info .. 111
-ffreestanding .. 111
-fno-asm.. 111
-fno-builtin ... 111
-fno-signed-bitfields... 111
-fno-unsigned-bitfields..................................... 111
-fsigned-bitfields.. 111
-fsigned-char ... 111
-funsigned-bitfields.. 111
-funsigned-char ... 111
-menable-fixed .. 111
-traditional ... 214

C Stack Usage ... 178
C standard libraries .. 102
C, Mixing with Assembly .. 236
Cast.. 114, 115
casting.. 201
char 111, 112, 145, 161, 202, 217
char data types... 28, 146
character constants

in C.. 154
Characters.. 269
Code Generation Conventions Options 129

-fargument-alias .. 129
-fargument-noalias .. 129
-fargument-noalias-global 129
-fcall-saved.. 129
-fcall-used ... 129
 2012-2018 Microchip Technology Inc. DS50002071G-page 403

MPLAB® XC16 C Compiler User’s Guide
-ffixed .. 129
-fno-ident ... 129
-fno-short-double... 130
-fno-verbose-asm.. 130
-fpack-struct .. 129
-fpcc-struct-return.. 130
-fshort-enums.. 130
-fverbose-asm ... 130

Code Size, Reduce .. 118
Coding ISRs ... 223
COFF ... 98
Command Line Options.. 94
Command-Line Compiler ... 94
Command-Line Options ... 106
Command-Line Simulator................................... 18, 98
Comments .. 112, 124
common C interface, see CCI
Common Subexpression Elimination119, 120, 121,

207
compilation

incremental builds ... 101
Compiler ... 98

Command-Line ... 94
Driver .. 18, 98
Overview ... 17

Compiler Description.. 17
compiler installation & activation49–??
compiler selection... 51
compiler-generated code.. 70
Compiling Multiple Files ... 100
const Attribute .. 207
const objects

initialization ... 155
const qualifier ... 155, 184
Constants

Predefined... 259, 335
constants

C specifiers ... 153
character ... 154
string, see string literals 154

Contact Microchip Technology............................... 379
context Attribute ... 208, 226
conversion between types...................................... 200
CORCON ... 136, 234
Customer Support .. 378

D
-D ..124, 125, 126
data default memory spaces 263
data memory .. 174
Data Memory Allocation ... 176
Data Memory Space................................107, 108, 197
Data Memory Space, Near..................................... 162
Data Type... 161
data types

size of.. 27
Data, Packed.. 193
data, space attribute... 164
dataflash, space attribute 164
-dD ... 124
Debugging Information... 118

Debugging Options... 118
-g ... 118
-Q .. 118
-save-temps .. 118

Declarators ... 272
Default Memory Spaces

auto_psv.. 264
data ... 263
dma ... 264
eedata ... 264
prog ... 263
psv... 264
xmemory ... 263
ymemory ... 263

Defining Global Register Variables 336
delay routine... 65
deprecated Attribute 115, 161, 208
Development Tools .. 19
device support .. 70
Device Support Files .. 132
Device Support Information.................................... 133
diagnostic files.. 105
Diagnostics... 285
Directories ...85, 124, 125, 126
Directory Search Options 129

-B... 96
-specs=.. 129

disabling interrupts ... 64
-dM ... 124
dma default memory spaces 264
dma, space attribute... 165
-dN.. 124
Documentation ... 17

Conventions .. 15
Layout ... 13

double..130, 147, 202, 217
driver

input files ... 95
driver option

CCI .. 47
EXT ... 280
PRE... 257

driver options.. 52, 95
dsPIC-Specific Options

-mauxflash... 109
-mconst-in-auxflash... 107
-mconst-in-code .. 107
-mconst-in-data ... 107
-mcpu .. 107
-merrata... 107
-mfillupper ... 107
-mlarge-arrays... 107
-mlarge-code ... 107
-mlarge-data.. 107
-mlegacy-libc ... 107
-mno-eds-warn .. 107
-mno-errata ... 107
-mno-file .. 107
-mno-isr-warn .. 108
-mno-pa... 108
-momf= .. 108
DS50002071G-page 404 2012-2018 Microchip Technology Inc.

Index
-moptimize-page ... 107
-mpa.. 108
-mpa=.. 108
-mpreserve-all ... 108
-mprint-builtins .. 108
-mprint-devices ... 108
-mprint-mchp- ... 108
-msfr-warn... 108
-msmall-code .. 108
-msmall-data ... 108
-msmall-scalar .. 108
-msmart-io... 109
-msmart-io-format ... 109
-mtext=.. 109
--partition... 109

DWARF.. 108

E
-E .. 110, 124, 125, 126, 127
eds Attribute... 161
EDS, Using .. 139
EEData..177, 195
eedata default memory spaces.............................. 264
eedata, space attribute .. 166
EEPROM Data Memory/Space.......................177, 195
ELF ...98, 108
Enabling/Disabling Interrupts 227
Enumerations... 272
Environment ... 268
Environment Variables... 95

PIC30_C_INCLUDE_PATH.............................. 96
PIC30_COMPILER_PATH 96
PIC30_LIBRARY_ PATH.................................. 96
TMPDIR .. 96
XC16_C_INCLUDE_PATH............................... 96
XC16_COMPILER_PATH 96
XC16_EXEC_PREFIX 96
XC16_LIBRARY_ PATH................................... 96

errno... 277
Error Control Options

-Werror.. 115
-Werror-implicit-function-declaration 112

error messages .. 72
location ... 72

Errors ... 285
Escape Sequences .. 269
Example ... 91
exit ... 277
extended character set .. 154
Extensions ... 125
extern ..115, 123, 215
External Symbols ... 236

F
F constant suffix ... 154
-falign-functions.. 119
-falign-labels... 119
-falign-loops ... 119
far Attribute 161, 199, 208, 216, 240
Far Data Space.. 199
-fargument-alias ... 129

-fargument-noalias ... 129
-fargument-noalias-global 129
-fcaller-saves.. 119
-fcall-saved... 129
-fcall-used... 129
-fcse-follow-jumps .. 119
-fcse-skip-blocks .. 119
-fdata-sections.. 119
-fdefer-pop. See -fno-defer
-fexpensive-optimizations....................................... 119
-ffixed ... 129, 336
-ffreestanding ... 111
-ffunction-sections .. 119
-fgcse ... 119
-fgcse-lm .. 119
-fgcse-sm ... 120
File Extensions... 97
file types

input .. 95
Files.. 276
--fill ... 127
fillupper Attribute .. 161
Final Frontier .. 164
-finline-functions115, 118, 123, 214
-finline-limit ... 123
-finstrument-functions... 209
-fkeep-inline-functions 123, 214
-fkeep-static-consts .. 123
Flags, Positive and Negative.......................... 123, 129
float ... 130, 147, 161, 202, 217
Floating .. 147
Floating Point ... 271
floating-point constant suffixes............................... 154
-fno ... 123, 129
-fno-asm ... 111
-fno-builtin .. 111
-fno-defer-pop .. 120
-fnofallback... 123
-fno-function-cse .. 123
-fno-ident .. 129
-fno-inline ... 123
-fno-keep-static-consts... 123
-fno-peephole ... 120
-fno-peephole2 ... 120
-fno-short-double.. 130
-fno-show-column... 124
-fno-signed-bitfields.. 111
-fno-unsigned-bitfields.. 111
-fno-verbose-asm ... 130
-fomit-frame-pointer.. 118, 123
-foptimize-register-move .. 120
-foptimize-sibling-calls.. 123
format Attribute... 208
format_arg Attribute ... 208
-fpack-struct ... 129
-fpcc-struct-return... 130
Frame Pointer (W14).........................84, 123, 129, 178
-fregmove ... 120
-frename-registers.. 120
-frerun-cse-after-loop 120, 121
 2012-2018 Microchip Technology Inc. DS50002071G-page 405

MPLAB® XC16 C Compiler User’s Guide
-frerun-loop-opt .. 120
-fschedule-insns ... 120
-fschedule-insns2 ... 120
-fshort-enums ... 130
-fsigned-bitfields ... 111
-fsigned-char .. 111
-fstrength-reduce.. 120, 121
-fstrict-aliasing ...118, 119, 121
-fsyntax-only ... 112
-fthread-jumps .. 118, 121
Function

Call Conventions... 217
Calls, Preserving Registers............................. 219
Parameters ... 217
Pointers ... 198, 215

function
parameters .. 177
pointers ... 152
size limits .. 213
specifiers... 204

functions
absolute .. 33
location of.. 70
size of.. 70
static.. 204

-funroll-all-loops.. 119, 121
-funroll-loops ...118, 119, 121
-funsigned-bitfields ... 111
-funsigned-char .. 111
-fverbose-asm .. 130

G
-g .. 118
--gc-sections... 127
general registers .. 239
getenv .. 277
Global Register Variables....................................... 336
Guidelines for Writing ISRs 222

H
-H ... 124
header file

search path ... 26
Header Files 85, 96, 97, 124, 125, 126
header files... 25, 247
--heap... 197
--help .. 110
help! ... 49
Hex File .. 99
hexadecimal constants

C code... 153
High-Priority Interrupts ... 228

I
-I ..96, 124, 126
-I- .. 124, 126
Identifiers.. 269
identifiers

unique length of .. 27
-idirafter .. 125
-imacros ... 125, 126

Implementation-Defined Behavior 267
implementation-defined behaviour 142
-include... 125, 126
incremental builds .. 101
Inhibit Warnings.. 112
Inline..115, 118, 123, 239
inline ... 123, 214
Inline Functions .. 214
input files .. 95
installation, see compiler installation & activation
int...145, 161, 202, 217
Integer .. 239

Behavior .. 270
integer constants .. 153
integer suffixes ... 153
integral promotion... 200
intermediate files .. 95
Internet Address, Microchip.................................... 378
Interrupt

Enabling/Disabling .. 227
Functions... 236
Handling .. 236
High Priority... 228
Latency.. 226
Low Priority ... 228
Nesting .. 226
Priority ... 226
Protection From... 230
Service Routine Context Saving 226
Vectors, Writing... 224

interrupt Attribute.....................209, 212, 223, 226, 261
Interrupt Vector Tables... 225
interrupts

disabling .. 64
-iprefix... 125
-iquote .. 124
ISR

Coding... 223
Guidelines for Writing...................................... 222
Syntax for Writing.. 222
Writing ... 222

-isystem .. 125
-iwithprefix .. 125
-iwithprefixbefore .. 125

K
keep Attribute ... 209

L
-L .. 127
-l ... 128
L constant suffix ... 153
Large Code Model.. 107
Large Data Model... 107
Latency... 226
-legacy-libc ... 127
lib directory ... 102
Librarian ... 98
librarian... 265
libraries

creating ... 52
DS50002071G-page 406 2012-2018 Microchip Technology Inc.

Index
replacing modules in 265
user defined .. 102

Library ...128, 247
ANSI Standard.. 18
Functions .. 274

limits.h header file ...145, 147
Linker ..98, 128
Linker Script ..133, 136
Linker Scripts ... 77
Linking Options .. 127

--fill .. 127
--gc-sections ... 127
-L... 127
-l .. 128
-legacy-libc.. 127
-nodefaultlibs .. 128
-nostdlib .. 128
-s... 128
-u... 128
-Wl .. 128
-Xlinker.. 128

LL, Suffix .. 145
Local Register Variables336, 337
long ... 145, 161, 202, 217
long _Fract ... 217
long double 130, 147, 161, 202, 217
long long ... 115, 145, 161, 202
long long int.. 145
Loop Optimization .. 207
Loop Optimizer... 120
Loop Unrolling...84, 121
Low-Priority Interrupts .. 228

M
-M... 125
Mabonga ...262, 338
macro .. 85, 124, 125, 126, 215
MacrosData Memory Allocation 176
main function...25, 234
main-line code.. 221
make files ... 101
map files... 105
-mauxflash ... 109
-mconst-in-auxflash.................................107, 198, 215
-mconst-in-code107, 198, 215
-mconst-in-data107, 198, 215
-mcpu ... 107
-MD .. 125
Memory .. 277
memory

remaining .. 71
summary ... 71

memory allocation.. 172
data memory... 174
function code .. 213
non-auto variables .. 174
static variables .. 175

Memory Models ..18, 198, 215
-mconst-in-auxflash198, 215
-mconst-in-code198, 215
-mconst-in-data..198, 215

-mlarge-code... 198, 215
-mlarge-data.. 198, 215
-msmall-code .. 198, 215
-msmall-data ... 198, 215
-msmall-scalar... 198, 215

Memory Spaces ... 175
-menable-fixed ... 111, 148
-merrata.. 107
messages

meaning .. 72
-MF... 125
-mfillupper .. 107
-MG .. 125
Mixing Assembly Language and C Variables and Func-

tions .. 236
-mlarge-arrays.. 107
-mlarge-code ...107, 198, 215
-mlarge-data..107, 198, 215
-mlegacy-libc .. 107
-MM .. 125
-MMD ... 125
-mno-eds-warn ... 107
-mno-errata .. 107
-mno-file ... 107
-mno-isr-warn ... 108
-mno-pa.. 108
mode Attribute.. 161
modules.. 97
-momf= ... 108
-moptimize-page .. 107
-MP... 125
-mpa ... 108
-mpa=... 108
MPLAB X IDE... 74

project properties options.................................. 52
-mpreserve-all .. 108
-mprint-builtins.. 108
-mprint-devices... 108
-mprint-mchp-... 108
-MQ .. 126
-msfr-warn .. 108
-msmall-code...................................108, 198, 215, 216
-msmall-data108, 198, 199, 215
-msmall-scalar.................................108, 198, 199, 215
-msmart-io .. 109
-msmart-io-format... 109
-MT... 126
-mtext= ... 109
myMicrochip Personalized Notification Service 377

N
naked Attribute ... 209
Near and Far Code .. 216
Near and Far Data ... 199, 216
near Attribute........................... 162, 199, 209, 216, 240
Near Data Section.. 199
Near Data Space.. 241
Nesting Interrupts... 226
no_instrument_function Attribute 209
-nodefaultlibs.. 128
noload Attribute .. 162, 209
 2012-2018 Microchip Technology Inc. DS50002071G-page 407

MPLAB® XC16 C Compiler User’s Guide
non-volatile RAM.. 155
noreturn Attribute ... 115, 210
-nostdinc... 124, 126
-nostdlib.. 128
NULL macro ... 32
NULL pointers .. 152

O
-O ... 118
-o .. 99, 110
-O0 ... 118
-O1 ... 118
-O2 ... 118
-O3 ... 118
Object File 82, 98, 119, 125, 127, 128, 247
Optimization ... 18
Optimization Control Options 118

-falign-functions... 119
-falign-labels.. 119
-falign-loops .. 119
-fcaller-saves... 119
-fcse-follow-jumps ... 119
-fcse-skip-blocks ... 119
-fdata-sections .. 119
-fexpensive-optimizations................................ 119
-ffunction-sections... 119
-fgcse .. 119
-fgcse-lm ... 119
-fgcse-sm .. 120
-finline-functions.. 123
-finline-limit .. 123
-fkeep-inline-functions..................................... 123
-fkeep-static-consts... 123
-fno-defer-pop ... 120
-fnofallback.. 123
-fno-function-cse ... 123
-fno-inline .. 123
-fno-peephole.. 120
-fno-peephole2.. 120
-fomit-frame-pointer... 123
-foptimize-register-move 120
-foptimize-sibling-calls..................................... 123
-fregmove.. 120
-frename-registers... 120
-frerun-cse-after-loop 120
-frerun-loop-opt ... 120
-fschedule-insns.. 120
-fschedule-insns2.. 120
-fstrength-reduce... 120
-fstrict-aliasing... 121
-fthread-jumps... 121
-funroll-all-loops .. 121
-funroll-loops ... 121
-O .. 118
-O0 .. 118
-O1 .. 118
-O2 .. 118
-O3 .. 118
-Os .. 118

Optimization, Loop ... 120, 207
Optimization, Peephole .. 120

optimizations
causing corruption... 64
faster code .. 67

optimize Attribute.. 210
Options

16-Bit Specific ... 107
Assembling.. 127
C Dialect Control ... 111
Code Generation Conventions........................ 129
Debugging... 118
Directory Search ... 129
Linking... 127
Optimization Control.. 118
Output Control ... 110
Preprocessor Control 124
Warnings and Errors Control........................... 112

-Os.. 118
Output Control Options... 110

-c ... 110
-E... 110
--help ... 110
-o ... 110
-S... 110
-v ... 110
-x ... 110

output files
names of ... 104

P
-P.. 126
packed Attribute ... 129, 162
Packing Data Stored in Flash................................. 193
Parameters, Function ... 217
parameters, see function, parameters
--partition .. 109
PATH.. 98
-pedantic... 115
Peephole Optimization ... 120
persistent Attribute ... 163
persistent data.. 177, 235
PIC30_C_INCLUDE_PATH 96
PIC30_COMPILER_PATH 96
PIC30_LIBRARY_ PATH ... 96
pic30-ar .. 74
pic30-as.. 74
pic30-gcc .. 94
pic30-ld... 74
pmp, space attribute... 166
point of.. 210
pointer .. 202, 217

comparisons.. 152
definitions .. 151
qualifiers.. 151
types.. 151

Pointers .. 116
Frame.. 84, 123, 129
Function .. 198, 215
Stack ... 129

pointers..151–??
assigning integers ... 152
function.. 152
DS50002071G-page 408 2012-2018 Microchip Technology Inc.

Index
Predefined Constants259, 335
prefix .. 125
preprocessing .. 257
Preprocessing Directives 273
Preprocessor Control Options................................ 124

-A .. 124
-C .. 124
-D .. 124
-dD .. 124
-dM.. 124
-dN .. 124
-fno-show-column ... 124
-H .. 124
-I.. 124
-I- .. 124
-idirafter... 125
-imacros .. 125
-include ... 125
-iprefix ... 125
-iquote... 124
-isystem .. 125
-iwithprefix... 125
-iwithprefixbefore .. 125
-M.. 125
-MD ... 125
-MF ... 125
-MG... 125
-MM... 125
-MMD .. 125
-MQ... 126
-MT ... 126
-nostdinc ... 126
-P .. 126
-trigraphs... 126
-U .. 126
-undef.. 126

preprocessor macros
predefined... 45

preserved Attribute... 163
Preserving Registers Across Function Calls 219
printf function ... 65
priority Attribute...163, 210
Procedural Abstraction... 108
Processor ID .. 107
prog default memory spaces.................................. 263
prog, space attribute .. 165
Program Memory Pointers198, 215
project name .. 104
Project Properties .. 78

MPLAB XC16 Assembler Options 80
MPLAB XC16 C Compiler Options 82
MPLAB XC16 Object Archiver Options............. 90
MPLAB XC16 Object Linker Options 86
XC16 Toolsuite Global Options 79

Projects .. 76
projects ... 101–??
psv default memory spaces 264
PSV Usage .. 195
PSV Window 181, 195, 198, 215
psv, space attribute.. 165

Q
-Q ... 118
qualifier

__align .. 38
__bank .. 37
__deprecate .. 43
__eeprom.. 39
__far.. 34
__interrupt... 40
__near... 35
__pack .. 42
__persistent .. 36
__section... 43
__xdata ... 37
__ydata ... 37
auto ... 177
const ... 155, 184
volatile... 64, 155

Qualifiers .. 272
qualifiers..155–??

and auto variables... 177
and structures ... 149

R
radix specifiers

C code... 153
RAW Dependency.. 120
Reading, Recommended ... 16
read-only variables... 155
Reduce Code Size ... 118
Register

Behavior.. 272
Definition Files .. 133

register ... 336, 337
registers

used by functions .. 203
replacing library modules 265
Reset...224, 226, 227
Return Type ... 113
Return Value .. 219
reverse Attribute... 163
rotate operator.. 65
round Attribute.. 210
runtime startup code .. 234

S
-S.. 110, 127
-s .. 128
safeguarding code.. 64
save(list) Attribute .. 210
-save-temps ... 118
Scalars ... 198, 215
Scheduling ... 120
section.. 82, 119
section Attribute 164, 211, 213, 261, 338
secure Attribute .. 164, 211
SFR ...18, 99, 133
sfr Attribute... 164
SFRs .. 136
shadow Attribute212, 223, 261
shared Attribute.. 164, 212
 2012-2018 Microchip Technology Inc. DS50002071G-page 409

MPLAB® XC16 C Compiler User’s Guide
short ..145, 202, 217
Signals ... 275
signed char... 145
signed int .. 145
signed long... 145
signed long long ... 145
signed short.. 145
Simulator, Command-Line.................................. 18, 98
size limits.. 69

const variables .. 184
Small Code Model .. 18, 108
Small Data Model ... 18, 108
Software Stack ..177, 178, 212
Source Code .. 77
source files ... 97
space Attribute ... 164, 261
space Attribute Arguments

auto_psv ... 165
data ... 164
dataflash ... 164
dma ... 165
eedata ... 166
pmp ... 166
prog... 165
psv .. 165
transparent_union ... 166
unordered.. 166
unsupported(message) 166
unused .. 166
weak.. 166
xmemory ... 164
ymemory ... 165

Special Function Registers............................... 99, 226
special function registers, see SFRs
Specifying Registers for Local Variables................ 337
-specs=... 129
SPLIM .. 134, 177
Stack .. 226

C Usage .. 178
Overflow.. 73
Pointer (W15)................... 129, 134, 177, 178, 234
Pointer Limit Register (SPLIM).........134, 177, 234
Software.. 177, 178

Standard I/O Functions .. 18
Startup

and Initialization .. 103
Module, Alternate.................................... 103, 235
Module, Primary...................................... 103, 234
Modules .. 178

Statements ... 272
static functions ... 204
static variables ... 175
storage duration ... 174
Streams.. 276
strerror.. 278
string literals ... 154

storage location... 154
type of ... 154

struct types, see structures
structure ... 202, 217

structure qualifiers .. 149
structure, bit fields .. 150
Structures ... 272
structures.. 149

bit-fields in ... 150
Suffix LL ... 145
Suffix ULL... 145
switch ... 113
symbol .. 128
Syntax Check ... 112
Syntax for Writing ISRs .. 222
system .. 277
System Header Files 113, 125

T
-T .. 133
TBLRD.. 196
temporary variables.. 177
TMPDIR.. 96
tmpfile... 277
-traditional... 111, 214
Traditional C ... 116
Translation.. 268
translation units .. 97
transparent_union Attribute 166
transparent_union, space attribute......................... 166
Trigraphs .. 113, 126
-trigraphs .. 126
Type Conversion .. 115
type conversions .. 200

U
-U.. 124, 125, 126
-u .. 128
U constant suffix ... 153
ULL, Suffix.. 145
unamed bit-fields .. 150
-undef ... 126
Underscore... 222, 236
Unions .. 272
unions

qualifiers.. 149
unnamed structure members 150
unordered Attribute... 166
unordered, space attribute 166
Unroll Loop ... 84, 121
unsigned char... 145
unsigned int .. 145
unsigned long ... 145
unsigned long long ... 145
unsigned long long int .. 145
unsigned short .. 145
unsupported Attribute 166, 212
unsupported(message), space attribute................. 166
unused Attribute 114, 166, 212
Unused Function Parameter 114
unused memory.. 71
Unused Variable... 114
unused variables

removing ... 155
unused, space attribute .. 166
DS50002071G-page 410 2012-2018 Microchip Technology Inc.

Index
update Attribute.. 166
USB.. 399
user_init Attribute ... 212
User-Defined Data Section 338
User-Defined Text Section213, 338
Using Inline Assembly Language........................... 239

V
-v .. 110
Variable Attributes.. 159
variables

absolute .. 33
auto... 177
location of ... 70
maximum size of ... 69
static ... 175
storage duration.. 174

Variables in Specified Registers 336
void .. 202
volatile qualifier ...64, 155

W
-W ... 112, 114, 115, 116, 285
-w ... 112
W Registers ..217, 236
W14.. 178
W15.. 178
-Wa .. 127
-Waggregate-return.. 115
-Wall .. 112, 114, 115, 116
Wall .. 117
warning messages ... 72

location ... 72
suppressing .. 73

Warnings.. 304
Warnings and Errors Control Options 112

-fsyntax-only ... 112
-w .. 112
-Waggregate-return .. 115
-Wall.. 112
-Wbad-function-cast.. 115
-Wcast-align.. 115
-Wcast-qual... 115
-Wchar-subscripts ... 112
-Wcomment .. 112
-Wconversion.. 115
-Wdiv-by-zero ... 112
-Werror.. 115
-Werror-implicit-function-declaration 112
-Wextra ... 115
-Wformat ... 112
-Wimplicit .. 112
-Wimplicit-function-declaration........................ 112
-Wimplicit-int ... 112
-Winline... 115
-Wlarger-than-... 115
-Wlong-long .. 115
-Wmain ... 112
-Wmissing-braces ... 112
-Wmissing-declarations................................... 115
-Wmissing-format-attribute.............................. 115

-Wmissing-noreturn... 115
-Wmissing-prototypes 115
-Wmultichar... 112
-Wnested-externs.. 115
-Wno-long-long ... 115
-Wno-multichar.. 112
-Wno-sign-compare .. 116
-Wpadded ... 115
-Wparentheses.. 112
-Wpointer-arith .. 116
-Wredundant-decls.. 116
-Wreturn-type .. 113
-Wsequence-point... 113
-Wshadow ... 116
-Wsign-compare.. 116
-Wstrict-prototypes.. 116
-Wswitch ... 113
-Wsystem-headers.. 113
-Wtraditional.. 116
-Wtrigraphs ... 113
-Wundef .. 116
-Wuninitialized... 113
-Wunknown-pragmas...................................... 114
-Wunused.. 114
-Wunused-function.. 114
-Wunused-label... 114
-Wunused-value.. 114
-Wunused-variable.. 114
-Wwrite-strings .. 116

Warnings, Inhibit .. 112
Watchdog Timer... 399
-Wbad-function-cast ... 115
-Wcast-align ... 115
-Wcast-qual .. 115
-Wchar-subscripts .. 112
-Wcomment.. 112
-Wconversion ... 115
-Wdiv-by-zero... 112
weak Attribute .. 166, 212
weak, space attribute ... 166
Web Site, Microchip ... 378
-Werror ... 115
-Werror-implicit-function-declaration 112
-Wformat ...112, 115, 208
-Wimplicit.. 112
-Wimplicit-function-declaration 112
-Wimplicit-int... 112
-Winline .. 115, 214
-Wl.. 128
-Wlarger-than- .. 115
-Wlong-long.. 115
-Wmain... 112
-Wmissing-braces .. 112
-Wmissing-declarations.. 115
-Wmissing-format-attribute..................................... 115
-Wmissing-noreturn.. 115
-Wmissing-prototypes .. 115
-Wmultichar .. 112
-Wnested-externs... 115
-Wno- ... 112
 2012-2018 Microchip Technology Inc. DS50002071G-page 411

MPLAB® XC16 C Compiler User’s Guide
-Wno-deprecated-declarations............................... 115
-Wno-div-by-zero.. 112
-Wno-long-long... 115
-Wno-multichar ... 112
-Wno-sign-compare.. 116, 117
-Wpadded... 115
-Wparentheses... 112
-Wpointer-arith.. 116
-Wredundant-decls ... 116
-Wreturn-type ... 113
Writing an Interrupt Service Routine 222
Writing the Interrupt Vector 224
-Wsequence-point .. 113
-Wshadow .. 116
-Wsign-compare ... 116
-Wstrict-prototypes ... 116
-Wswitch... 113
-Wsystem-headers ... 113
-Wtraditional ... 116
-Wtrigraphs... 113
-Wundef.. 116
-Wuninitialized.. 113
-Wunknown-pragmas 113, 114
-Wunused... 114
Wunused .. 117
-Wunused-function ... 114
-Wunused-label .. 114
-Wunused-value ... 114
-Wunused-variable ... 114
-Wwrite-strings ... 116

X
-x .. 110
XC16_C_INCLUDE_PATH 96
XC16_COMPILER_PATH.. 96
XC16_EXEC_PREFIX.. 96
XC16_LIBRARY_ PATH .. 96
XC16_VERSION .. 259
-Xlinker ... 128
xmemory default memory spaces 263
xmemory, space attribute....................................... 164

Y
ymemory default memory spaces 263
ymemory, space attribute....................................... 165
DS50002071G-page 412 2012-2018 Microchip Technology Inc.

DS50002071G-page 413 2012-2018 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/
support
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Austin, TX
Tel: 512-257-3370
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Cleveland
Independence, OH
Tel: 216-447-0464
Fax: 216-447-0643
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Novi, MI
Tel: 248-848-4000
Houston, TX
Tel: 281-894-5983
Indianapolis
Noblesville, IN
Tel: 317-773-8323
Fax: 317-773-5453
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
New York, NY
Tel: 631-435-6000
San Jose, CA
Tel: 408-735-9110
Canada - Toronto
Tel: 905-695-1980
Fax: 905-695-2078

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2943-5100
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8569-7000
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Chongqing
Tel: 86-23-8980-9588
Fax: 86-23-8980-9500
China - Dongguan
Tel: 86-769-8702-9880
China - Guangzhou
Tel: 86-20-8755-8029
China - Hangzhou
Tel: 86-571-8792-8115
Fax: 86-571-8792-8116
China - Hong Kong SAR
Tel: 852-2943-5100
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8864-2200
Fax: 86-755-8203-1760
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
China - Xiamen
Tel: 86-592-2388138
Fax: 86-592-2388130
China - Zhuhai
Tel: 86-756-3210040
Fax: 86-756-3210049
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-3019-1500
Japan - Osaka
Tel: 81-6-6152-7160
Fax: 81-6-6152-9310
Japan - Tokyo
Tel: 81-3-6880- 3770
Fax: 81-3-6880-3771
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-227-8870
Fax: 60-4-227-4068
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-5778-366
Fax: 886-3-5770-955
Taiwan - Kaohsiung
Tel: 886-7-213-7828
Taiwan - Taipei
Tel: 886-2-2508-8600
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Dusseldorf
Tel: 49-2129-3766400
Germany - Karlsruhe
Tel: 49-721-625370
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Italy - Venice
Tel: 39-049-7625286
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Poland - Warsaw
Tel: 48-22-3325737
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
Sweden - Stockholm
Tel: 46-8-5090-4654
UK - Wokingham
Tel: 44-118-921-5800
Fax: 44-118-921-5820

Worldwide Sales and Service

06/23/16

http://support.microchip.com
http://www.microchip.com

	Preface
	Chapter 1. Compiler Overview
	1.1 Introduction
	1.2 Device Description
	1.3 Compiler Description and Documentation
	1.4 Compiler and Other Development Tools

	Chapter 2. Common C Interface
	2.1 Introduction
	2.2 Background – The Desire for Portable Code
	2.3 Using the CCI
	2.4 ANSI Standard Refinement
	2.5 ANSI Standard Extensions
	2.6 Compiler Features

	Chapter 3. How To’s
	3.1 Introduction
	3.2 Installing and Activating the Compiler
	3.3 Invoking the Compiler
	3.4 Writing Source Code
	3.5 Getting My Application to Do What I Want
	3.6 Understanding the Compilation Process
	3.7 Fixing Code That Does Not Work

	Chapter 4. XC16 Toolchain and MPLAB X IDE
	4.1 Introduction
	4.2 MPLAB X IDE and Tools Installation
	4.3 MPLAB X IDE Setup
	4.4 MPLAB X IDE Projects
	4.5 Project Setup
	4.6 Project Example

	Chapter 5. Compiler Command-Line Driver
	5.1 Introduction
	5.2 Invoking the Compiler
	5.3 The Compilation Sequence
	5.4 Runtime Files
	5.5 Compiler Output
	5.6 Compiler Messages
	5.7 Driver Option Descriptions
	5.8 MPLAB X IDE Toolchain Equivalents

	Chapter 6. Device-Related Features
	6.1 Introduction
	6.2 Device Support
	6.3 Device Header Files
	6.4 Stack
	6.5 Configuration Bit Access
	6.6 Using SFRs
	6.7 Bit-Reversed and Modulo Addressing
	6.8 Using EDS

	Chapter 7. Differences Between MPLAB XC16 and ANSI C
	7.1 Divergence from the ANSI C Standard
	7.2 Extensions to the ANSI C Standard
	7.3 Implementation-Defined Behavior

	Chapter 8. Supported Data Types and Variables
	8.1 Introduction
	8.2 Identifiers
	8.3 Integer Data Types
	8.4 Floating-Point Data Types
	8.5 Fixed-Point Data Types
	8.6 Structures and Unions
	8.7 Pointer Types
	8.8 Literal Constant Types and Formats
	8.9 Standard Type Qualifiers
	8.10 Compiler-Specific type Qualifiers
	8.11 Variable Attributes

	Chapter 9. Fixed-Point Arithmetic Support
	9.1 Introduction
	9.2 Enabling Fixed-Point Arithmetic Support
	9.3 Data Types
	9.4 Rounding
	9.5 Division By Zero
	9.6 External Definitions
	9.7 Mixing C and Assembly Language Code

	Chapter 10. Memory Allocation and Access
	10.1 Introduction
	10.2 Address Spaces
	10.3 Variables In Data Space Memory
	10.4 Variables in Program Space
	10.5 Parallel Master Port Access
	10.6 External Memory Access
	10.7 Extended Data Space Access
	10.8 Dataflash Memory Access
	10.9 Dual Partition Memory Access
	10.10 Packing Data Stored in Flash
	10.11 Allocation of Variables to Registers
	10.12 Variables in EEPROM Data Space
	10.13 Dynamic Memory Allocation
	10.14 Co-resident Applications
	10.15 Memory Models

	Chapter 11. Operators and Statements
	11.1 Introduction
	11.2 Built-In Functions
	11.3 Integral Promotion

	Chapter 12. Register Usage
	12.1 Introduction
	12.2 Register Variables
	12.3 Changing Register Contents

	Chapter 13. Functions
	13.1 Introduction
	13.2 Writing Functions
	13.3 Function Size Limits
	13.4 Allocation of Function Code
	13.5 Changing the Default Function Allocation
	13.6 Inline Functions
	13.7 Memory Models
	13.8 Function Call Conventions

	Chapter 14. Interrupts
	14.1 Introduction
	14.2 Interrupt Operation
	14.3 Writing an Interrupt Service Routine
	14.4 Specifying the Interrupt Vector
	14.5 Interrupt Service Routine Context Saving
	14.6 Nesting Interrupts
	14.7 Enabling/Disabling Interrupts
	14.8 ISR Considerations

	Chapter 15. Main, Runtime Startup and Reset
	15.1 Introduction
	15.2 The main Function
	15.3 Runtime Startup and Initialization

	Chapter 16. Mixing C and Assembly Code
	16.1 Introduction
	16.2 Mixing Assembly Language and C Variables and Functions
	16.3 Using Inline Assembly Language
	16.4 Predefined Assembly Macros

	Chapter 17. Library Routines
	17.1 Introduction

	Chapter 18. Optimizations
	18.1 Introduction
	18.2 Optimization Feature Summary
	18.3 How to Enable Optimization
	18.4 Using Optimizations

	Chapter 19. Preprocessing
	19.1 Introduction
	19.2 C Language Comments
	19.3 Preprocessing Directives
	19.4 Predefined Macro Names
	19.5 Pragmas vs. Attributes

	Chapter 20. Linking Programs
	20.1 Introduction
	20.2 Default Memory Spaces
	20.3 Replacing Library Symbols
	20.4 Linker-Defined Symbols
	20.5 Default Linker Script

	Appendix A. Implementation-Defined Behavior
	A.1 Introduction
	A.2 Translation
	A.3 Environment
	A.4 Identifiers
	A.5 Characters
	A.6 Integers
	A.7 Floating Point
	A.8 Arrays and Pointers
	A.9 Registers
	A.10 Structures, Unions, Enumerations and Bit-Fields
	A.11 Qualifiers
	A.12 Declarators
	A.13 Statements
	A.14 Preprocessing Directives
	A.15 Library Functions
	A.16 Signals
	A.17 Streams and Files
	A.18 tmpfile
	A.19 errno
	A.20 Memory
	A.21 abort
	A.22 exit
	A.23 getenv
	A.24 system
	A.25 strerror

	Appendix B. Embedded Compiler Compatibility Mode
	B.1 Introduction
	B.2 Compiling in Compatibility Mode
	B.3 Syntax Compatibility
	B.4 Data Type
	B.5 Operator
	B.6 Extended Keywords
	B.7 Intrinsic Functions
	B.8 Pragmas

	Appendix C. Diagnostics
	C.1 Introduction
	C.2 Errors
	C.3 Warnings

	Appendix D. GNU Free Documentation License
	D.1 Preamble
	D.2 Applicability and Definitions
	D.3 Verbatim Copying
	D.4 Copying in Quantity
	D.5 Modifications
	D.6 Combining Documents
	D.7 Collections of Documents
	D.8 Aggregation with Independent Works
	D.9 Translation
	D.10 Termination
	D.11 Future Revisions of this License
	D.12 Relicensing

	Appendix F. Deprecated Features
	F.1 Introduction
	F.2 Predefined Constants
	F.3 Variables in Specified Registers
	F.4 Changing Non-Auto Variable Allocation
	F.5 Configuration Settings Using Macros

	Appendix G. Built-in Functions
	G.1 Introduction
	G.2 Built-In Function Descriptions

	Appendix H. Document Revision History
	Support
	Glossary
	Index
	Worldwide Sales and Service

